We aggregated genome-wide genotyping data from 32 European-descent GWAS (74,124 T2D cases, 824,006 controls) imputed to high-density reference panels of >30,000 sequenced haplotypes. Analysis of ˜27M variants (˜21M with minor allele frequency [MAF]<5%), identified 243 genome-wide significant loci (p<5x10-8; MAF 0.02%-50%; odds ratio [OR] 1.04-8.05), 135 not previously-implicated in T2D-predisposition. Conditional analyses revealed 160 additional distinct association signals (p<10-5) within the identified loci. The combined set of 403 T2D-risk signals includes 56 low-frequency (0.5%≤MAF<5%) and 24 rare (MAF<0.5%) index SNPs at 60 loci, including 14 with estimated allelic OR>2. Forty-one of the signals displayed effect-size heterogeneity between BMI-unadjusted and adjusted analyses. Increased sample size and improved imputation led to substantially more precise localisation of causal variants than previously attained: at 51 signals, the lead variant after fine-mapping accounted for >80% posterior probability of association (PPA) and at 18 of these, PPA exceeded 99%. Integration with islet regulatory annotations enriched for T2D association further reduced median credible set size (from 42 variants to 32) and extended the number of index variants with PPA>80% to 73. Although most signals mapped to regulatory sequence, we identified 18 genes as human validated therapeutic targets through coding variants that are causal for disease. Genome wide chip heritability accounted for 18% of T2D-risk, and individuals in the 2.5% extremes of a polygenic risk score generated from the GWAS data differed >9-fold in risk. Our observations highlight how increases in sample size and variant diversity deliver enhanced discovery and single-variant resolution of causal T2D-risk alleles, and the consequent impact on mechanistic insights and clinical translation.
Through genome-wide association meta-analyses of up to 133,010 individuals of European ancestry without diabetes, including individuals newly genotyped using the Metabochip, we have raised the number of confirmed loci influencing glycemic traits to 53, of which 33 also increase type 2 diabetes risk (q < 0.05). Loci influencing fasting insulin showed association with lipid levels and fat distribution, suggesting impact on insulin resistance. Gene-based analyses identified further biologically plausible loci, suggesting that additional loci beyond those reaching genome-wide significance are likely to represent real associations. This conclusion is supported by an excess of directionally consistent and nominally significant signals between discovery and follow-up studies. Functional follow-up of these newly discovered loci will further improve our understanding of glycemic control.
A genome-wide association study of educational attainment was conducted in a discovery sample of 101,069 individuals and a replication sample of 25,490. Three independent SNPs are genome-wide significant (rs9320913, rs11584700, rs4851266), and all three replicate. Estimated effects sizes are small (R2 ≈ 0.02%), approximately 1 month of schooling per allele. A linear polygenic score from all measured SNPs accounts for ≈ 2% of the variance in both educational attainment and cognitive function. Genes in the region of the loci have previously been associated with health, cognitive, and central nervous system phenotypes, and bioinformatics analyses suggest the involvement of the anterior caudate nucleus. These findings provide promising candidate SNPs for follow-up work, and our effect size estimates can anchor power analyses in social-science genetics.
Recent genome-wide association studies have described many loci implicated in type 2 diabetes (T2D) pathophysiology and beta-cell dysfunction, but contributed little to our understanding of the genetic basis of insulin resistance. We hypothesized that genes implicated in insulin resistance pathways may be uncovered by accounting for differences in body mass index (BMI) and potential interaction between BMI and genetic variants. We applied a novel joint meta-analytical approach to test associations with fasting insulin (FI) and glucose (FG) on a genome-wide scale. We present six previously unknown FI loci at P<5×10−8 in combined discovery and follow-up analyses of 52 studies comprising up to 96,496non-diabetic individuals. Risk variants were associated with higher triglyceride and lower HDL cholesterol levels, suggestive of a role for these FI loci in insulin resistance pathways. The localization of these additional loci will aid further characterization of the role of insulin resistance in T2D pathophysiology.
Summary paragraphThe Trans-Omics for Precision Medicine (TOPMed) program seeks to elucidate the genetic architecture and disease biology of heart, lung, blood, and sleep disorders, with the ultimate goal of improving diagnosis, treatment, and prevention. The initial phases of the program focus on whole genome sequencing of individuals with rich phenotypic data and diverse backgrounds. Here, we describe TOPMed goals and design as well as resources and early insights from the sequence data. The resources include a variant browser, a genotype imputation panel, and sharing of genomic and phenotypic data via dbGaP. In 53,581 TOPMed samples, >400 million single-nucleotide and insertion/deletion variants were detected by alignment with the reference genome. Additional novel variants are detectable through assembly of unmapped reads and customized analysis in highly variable loci. Among the >400 million variants detected, 97% have frequency <1% and 46% are singletons. These rare variants provide insights into mutational processes and recent human evolutionary history. The nearly complete catalog of genetic variation in TOPMed studies provides unique opportunities for exploring the contributions of rare and non-coding sequence variants to phenotypic variation. Furthermore, combining TOPMed haplotypes with modern imputation methods improves the power and extends the reach of nearly all genome-wide association studies to include variants down to ~0.01% in frequency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.