Abstract.Anomalous, large pipe-to-soil potentials (PSP) have been observed along a natural gas pipeline in eastern Ontario, Canada, where there is a major geological contact between the highly resistive rocks of the Precambrian Shield to the west and the more conductive Paleozoic sediments to the east. This study tested the hypothesis that large variations of PSP are related to lateral changes of Earth conductivity under the pipeline. Concurrent and co-located PSP and magnetotelluric (MT) geophysical data were acquired in the study area. Results from the MT survey were used to model PSP variations based on distributed-source transmission line theory, using a spatially-variant surface geoelectric field. Different models were built to investigate the impact of different subsurface features. Good agreement between modelled and observed PSP was reached when impedance peaks related to major changes of subsurface geological conditions were included. The large PSP could therefore be attributed to the presence of resistive intrusive bodies in the upper crust and/or boundaries between tectonic terranes. This study demonstrated that combined PSP-MT investigations are a useful tool in the identification of potential hazards caused by geomagnetically induced currents in pipelines.
Formulas for the minimum-deviation angle when the optical axis is contained in the incidence plane have been developed. The variation of the minimum-deviation angle as a function of the direction of the optical axis has been analyzed, and it was verified that the width of the incident beam was the same as the width of the emerging beam for the extraordinary rays as well.
This paper analyzes geomagnetic disturbances associated with seismic events in the northern transcurrent margin of the South Sandwich microplate and South American plate, with their epicenter at distances within 350 km from King Edward Point geomagnetic observatory on the archipelago of the Georgias del Sur islands.
Geomagnetic field records measured over a one-year period in three observatories of the INTERMAGNET network near the area under study are examined. Anomalous variations in geomagnetic records can be detected within approximately 3 hours before the manifestation of seismic events with a magnitude above 4.4 Mw.
Based on the analysis of the differences in horizontal field components among the observatories and the frequency spectrum of the geomagnetic field observations using the wavelet method, oscillations of several nT can be observed before an event, in addition to magnetic peaks with variable amplitude and duration.
It is worth noting that, during the period of study, no severe ionospheric effects were recorded as this was a phase of low solar activity (solar cycle 24 minimum).
The observation of these potential magnetic precursors suggests that there is a critical preparatory period in a region with geological faults related to the stress generated in the rocks before the built-up energy is released in the hypocenter area, within the lithosphere, which may predict the mechanical motion based on anomalous geomagnetic records.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.