Human annexin A5 is a ubiquitous protein implicated in diverse signal transduction processes associated with cell growth and differentiation, and its gene regulation is an important component of this function. Promoter transcriptional activity was determined for a wide 5' portion of the human annexin A5 gene, from bp -1275 to +79 relative to the most 5' of several discrete transcription start points. Transfection experiments carried out in HeLa cells identified the segment from bp -202 to +79 as the minimal promoter conferring optimal transcriptional activity. Two canonical Sp1 sites in the immediate 5' flanking region of a CpG island were required for significant transcription. Strong repressive activity in the distal promoter region between bp -717 to -1153 was attributed to the presence of an endogenous retroviral long terminal repeat, homologous with long terminal repeat 47B. The downstream sequence from bp position +31 to +79 in untranslated exon 1 was also essential for transcription, as its deletion from any of the plasmid constructs abolished activity in transfection assays. Electrophoretic mobility-shift assays, Southwestern-blot analysis and affinity chromatography were used to identify a protein doublet of relative molecular mass 35 kDa that bound an octanucleotide palindromic sequence in exon 1. The DNA cis-element resembled an E-box, but did not bind higher molecular mass transcription factors, such as upstream stimulatory factor or activator protein 4. The discovery of a downstream element crucial for annexin A5 gene transcription, and its interaction with a potentially novel transcription factor or complex, may provide a clue to understanding the initiation of transcription by TATA-less, multiple start site promoters.
Mouse annexin V genomic clones were characterized by restriction analysis, Southern blotting and DNA sequencing. The entire gene spans close to 50 kb of the mouse genome and contains 14 exons ranging in size from 31 bp for exon 2 to 482 bp for exon 13 up to the polyadenylation site. Intron sizes range from 111 bp for intron 1b to more than 17 kb for intron 2. Non-coding exon 1 is present in two alternative forms separated by approx. 7.4 kb, and the two promoters associated with exons 1a and 1b are quite distinct. The upstream promoter has a TATA box and may direct the limited, tissue-specific expression of mRNA transcripts containing exon 1a. The downstream, TATA-less promoter has high G+C content, and exon 1b predominates among abundantly expressed mRNA species. The conservation of certain cis-elements, including Sp1, AP2, gamma-IRE and NF-IL6, in orthologous species of annexin V genes points to their possible role in trans-acting protein factor binding and gene regulation. Primer-extension analysis revealed multiple origins for transcription, with principal start sites 100-150 bp upstream of the ATG start codon in exon 2. Intron 4 was longer than that previously identified in the orthologous rat gene due to the integration of an apparently complete copy of the murine endogenous retrovirus element, MuERV-L. Phylogenetic analysis of annexin V from 12 species and the presence of neighbouring loci with paralogous counterparts linked to annexin VI pointed to the common ancestry of these genes via chromosomal duplication more than 600 million years ago.
Mouse annexin V genomic clones were characterized by restriction analysis, Southern blotting and DNA sequencing. The entire gene spans close to 50 kb of the mouse genome and contains 14 exons ranging in size from 31 bp for exon 2 to 482 bp for exon 13 up to the polyadenylation site. Intron sizes range from 111 bp for intron 1b to more than 17 kb for intron 2. Non-coding exon 1 is present in two alternative forms separated by approx. 7.4 kb, and the two promoters associated with exons 1a and 1b are quite distinct. The upstream promoter has a TATA box and may direct the limited, tissue-specific expression of mRNA transcripts containing exon 1a. The downstream, TATA-less promoter has high G+C content, and exon 1b predominates among abundantly expressed mRNA species. The conservation of certain cis-elements, including Sp1, AP2, gamma-IRE and NF-IL6, in orthologous species of annexin V genes points to their possible role in trans-acting protein factor binding and gene regulation. Primer-extension analysis revealed multiple origins for transcription, with principal start sites 100-150 bp upstream of the ATG start codon in exon 2. Intron 4 was longer than that previously identified in the orthologous rat gene due to the integration of an apparently complete copy of the murine endogenous retrovirus element, MuERV-L. Phylogenetic analysis of annexin V from 12 species and the presence of neighbouring loci with paralogous counterparts linked to annexin VI pointed to the common ancestry of these genes via chromosomal duplication more than 600 million years ago.
Human annexin A5 is a ubiquitous protein implicated in diverse signal transduction processes associated with cell growth and differentiation, and its gene regulation is an important component of this function. Promoter transcriptional activity was determined for a wide 5′ portion of the human annexin A5 gene, from bp −1275 to +79 relative to the most 5′ of several discrete transcription start points. Transfection experiments carried out in HeLa cells identified the segment from bp −202 to +79 as the minimal promoter conferring optimal transcriptional activity. Two canonical Sp1 sites in the immediate 5′ flanking region of a CpG island were required for significant transcription. Strong repressive activity in the distal promoter region between bp −717 to −1153 was attributed to the presence of an endogenous retroviral long terminal repeat, homologous with long terminal repeat 47B. The downstream sequence from bp position +31 to +79 in untranslated exon 1 was also essential for transcription, as its deletion from any of the plasmid constructs abolished activity in transfection assays. Electrophoretic mobility-shift assays, Southwestern-blot analysis and affinity chromatography were used to identify a protein doublet of relative molecular mass 35kDa that bound an octanucleotide palindromic sequence in exon 1. The DNA cis-element resembled an E-box, but did not bind higher molecular mass transcription factors, such as upstream stimulatory factor or activator protein 4. The discovery of a downstream element crucial for annexin A5 gene transcription, and its interaction with a potentially novel transcription factor or complex, may provide a clue to understanding the initiation of transcription by TATA-less, multiple start site promoters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.