Neonatal sepsis is still a leading cause of death among newborns. Therefore a protein-microarray for point-of-care testing that simultaneously quantifies the sepsis associated serum proteins IL-6, IL-8, IL-10, TNF alpha, S-100, PCT, E-Selectin, CRP and Neopterin has been developed. The chip works with only a 4 μL patient serum sample and hence minimizes excessive blood withdrawal from newborns. The 4 μL patient samples are diluted with 36 μL assay buffer and distributed to four slides for repetitive measurements. Streptavidin coated magnetic particles that act as distinct stirring detection components are added, not only to stir the sample, but also to detect antibody antigen binding events. We demonstrate that the test is complete within 2.5 h using a single step assay. S-100 conjugated to BSA is spotted in increasing concentrations to create an internal calibration. The presented low volume protein-chip fulfills the requirements of point-of-care testing for accurate and repeatable (CV < 14%) quantification of serum proteins for the diagnosis of neonatal sepsis.
Background:The control of rapid proliferation of granulosa cells during chicken oocyte growth is unknown. Results: Reelin is expressed in theca cells and triggers disabled-1 phosphorylation in granulosa cells via ApoER2 and the VLDL receptor. Conclusion:The Reelin signaling pathway stimulates granulosa cell proliferation during folliculogenesis. Significance: This work demonstrates a novel function of Reelin.
A protein microarray for the early stage diagnosis of sepsis that allows the simultaneous detection of C-reactive protein (CRP) (2-200 μg/mL), procalcitonin (PCT) (0.2-50 ng/mL), and interleukin 6 (IL-6) (2-2000 pg/mL) has been developed. To enable the parallel detection of the differently abundant analytes, the low binding affinity between CRP and phosphocholine is exploited in a "low-sensitive" sandwich assay for CRP. The calibration is integrated directly on the chip resulting in a "one patient-one array" format, to provide a user-friendly and rapid diagnostic tool. Four different assay designs are introduced: (I) the classical assay that works with biotin-streptavidin chemistry, (II) the rapid assay that is performed in a single detection step, and two ultrasensitive assay designs accomplished either by (III) an enzymatic or (IV) an antibody mediated amplification resulting in high density labeling. The assay designs were evaluated by the repetitive measurement of low, medium, and high concentration levels of commercially available certified control sera. The precision was similar across all assay designs (coefficient of variation (CV), CVintra: 8-14%; CVinter: 18-34%), while the sensitivity (limits of detection (LODs)) increased by 1 order of magnitude for the ultrasensitive assays (III, IV) and the accuracy was analyte dependent but best for the classical (I) and the antibody amplified (IV) assays.
A complex prepolymerized film comprising monomers, cross-linkers, and initiator is usually used to create molecularly imprinted polymers. We herein exploit ready-to-use resist materials and link molecular surface imprinting with UV- and thermo-nanoimprinting techniques to create a sensor layer for the specific recognition of the bacterial surface markers lipopolysaccharide (LPS) and lipoteichoic acid (LTA). To account for the highly polar moieties of LPS and LTA, we evaluate different resist and stamp materials of distinct surface properties by AFM and molecularly imprinted sorbent assays. Thermo nanoimprinting of LPS and LTA micelles to Epon 1002F films exhibits excellent sensitivity of up to 13 times increased signals compared to those of the nonimprinted films and negligible cross-reaction with the tested nonspecific analyte. Additionally, the sensitivity and selectivity of the thermo nanoimprints is compared to conventional molecular surface imprints using a cocktail of acrylic monomers in QCM measurements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.