Most patients with BRAF-mutant metastatic melanoma display remarkable but incomplete and short-lived responses to inhibitors of the BRAF kinase or the mitogen-activated protein kinase kinase (MEK), collectively BRAF/MEK inhibitors. We found that inherent resistance to these agents in BRAF(V600)-mutant melanoma cell lines was associated with high abundance of c-JUN and characteristics of a mesenchymal-like phenotype. Early drug adaptation in drug-sensitive cell lines grown in culture or as xenografts, and in patient samples during therapy, was consistently characterized by down-regulation of SPROUTY4 (a negative feedback regulator of receptor tyrosine kinases and the BRAF-MEK signaling pathway), increased expression of JUN and reduced expression of LEF1. This coincided with a switch in phenotype that resembled an epithelial-mesenchymal transition (EMT). In cultured cells, these BRAF inhibitor-induced changes were reversed upon removal of the drug. Knockdown of SPROUTY4 was sufficient to increase the abundance of c-JUN in the absence of drug treatment. Overexpressing c-JUN in drug-naïve melanoma cells induced similar EMT-like phenotypic changes to BRAF inhibitor treatment, whereas knocking down JUN abrogated the BRAF inhibitor-induced early adaptive changes associated with resistance and enhanced cell death. Combining the BRAF inhibitor with an inhibitor of c-JUN amino-terminal kinase (JNK) reduced c-JUN phosphorylation, decreased cell migration, and increased cell death in melanoma cells. Gene expression data from a panel of melanoma cell lines and a patient cohort showed that JUN expression correlated with a mesenchymal gene signature, implicating c-JUN as a key mediator of the mesenchymal-like phenotype associated with drug resistance.
The proinflammatory cytokine tumor necrosis factor (TNF) modulates cellular responses through the mitogen-activated protein kinase (MAPK) and nuclear factor-kappaB (NF-kappaB) signaling pathways, but the molecular mechanisms underlying MAPK activation are unknown. T cell protein tyrosine phosphatase (TCPTP) is essential for hematopoietic development and negatively regulates inflammatory responses. Using TCPTP-deficient fibroblasts, we show here that TCPTP regulates TNF-induced MAPK but not NF-kappaB signaling. TCPTP interacted with the adaptor protein TRAF2, and dephosphorylated and inactivated Src tyrosine kinases to suppress downstream signaling through extracellular signal-regulated kinases and production of interleukin 6. These results link TCPTP and Src tyrosine kinases to the selective regulation of TNF-induced MAPK signaling and identify a previously unknown mechanism for modulating inflammatory responses mediated by TNF.
Here we report that T cell protein tyrosine phosphatase (TCPTP)-dependent and -independent pathways attenuate the JAK and Src protein tyrosine kinases (PTKs) and STAT3 phosphorylation to suppress cyclin D1 expression and S phase progression in response to DNA replication stress. Cells that lack TCPTP fail to suppress JAK1, Src, and STAT3, allowing for sustained cyclin D1 levels and progression through S phase despite continued replication stress. Cells that bypass the checkpoint undergo aberrant mitoses with lagging chromosomes that stain for the DNA damage marker gamma H2AX. Therefore, inactivating JAK, Src, and STAT3 signaling pathways in response to DNA replication stress may be essential for the suppression of S phase progression and the maintenance of genomic stability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.