Summary Platelets are primarily involved in thrombosis and haemostasis, and they have recently been shown to have a role in innate immunity and in inflammation. We have determined the markers of innate immunity that are expressed by platelets, specifically the Toll-like receptors (TLR), originating from mixes of platelet concentrates (MPC, n = 5) between day zero and day five after blood collection. The surface membrane and intracellular expression of TLR were measured, both after and without permeabilization, using flow cytometry. We observed weak expression of TLR2, TLR4 and TLR9 on the surface of CD41 + platelets. The expression levels of TLR4 were high (59 ± 2.2%). Moreover, there was a significant expression of TLR2 (47.5 ± 4.8%), TLR4 (78.8 ± 1.3%) and TLR9 (34.2 ± 7.5%) in the cytoplasm of CD41 + platelets. The expression of the three receptors did not change significantly during the course of the 5 day observation period. The percentage of TLR expression is significantly modulated between activated versus non-activated platelets, both after and without permeabilization ( P < 0.01). Study of the expression of TLR could increase our knowledge of the level of platelet participation during an immune reaction and inflammation. In the same way as the platelet ligand/receptor pair CD40L/CD40 is, the TLR are expressed by platelets, and could serve as a link between innate and adaptive immunity.
Our data provide evidence that stored PLTs contain molecules with known immunomodulatory competence and secrete them differentially over time during storage for transfusion purposes.
This study demonstrates the putative participation of PLT-derived sOX40L, IL-27, and sCD40L, which accumulate in PC supernatants, with inflammatory-type ATRs. Further studies are required to determine the clinical significance of these findings to forecast preventive measures whenever possible.
BackgroundPlatelet component (PC) transfusion leads occasionally to inflammatory hazards. Certain BRMs that are secreted by the platelets themselves during storage may have some responsibility.Methodology/Principal FindingsFirst, we identified non-stochastic arrangements of platelet-secreted BRMs in platelet components that led to acute transfusion reactions (ATRs). These data provide formal clinical evidence that platelets generate secretion profiles under both sterile activation and pathological conditions. We next aimed to predict the risk of hazardous outcomes by establishing statistical models based on the associations of BRMs within the incriminated platelet components and using decision trees. We investigated a large (n = 65) series of ATRs after platelet component transfusions reported through a very homogenous system at one university hospital. Herein, we used a combination of clinical observations, ex vivo and in vitro investigations, and mathematical modeling systems. We calculated the statistical association of a large variety (n = 17) of cytokines, chemokines, and physiologically likely factors with acute inflammatory potential in patients presenting with severe hazards. We then generated an accident prediction model that proved to be dependent on the level (amount) of a given cytokine-like platelet product within the indicated component, e.g., soluble CD40-ligand (>289.5 pg/109 platelets), or the presence of another secreted factor (IL-13, >0). We further modeled the risk of the patient presenting either a febrile non-hemolytic transfusion reaction or an atypical allergic transfusion reaction, depending on the amount of the chemokine MIP-1α (<20.4 or >20.4 pg/109 platelets, respectively).Conclusions/SignificanceThis allows the modeling of a policy of risk prevention for severe inflammatory outcomes in PC transfusion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.