Web image retrieval is a research area that is receiving a lot of attention in the last few years due to the growing availability of images on the Web. Since contentbased image retrieval is still considered very difficult and expensive in the Web context, most current large-scale Web image search engines use textual descriptions to represent the content of the Web images. In this paper we present a study about the usage of genetic programming (GP) to address the problem of image retrieval on the World Wide Web by using textual sources of evidence and textual queries. We investigate several parameter of choices related to the usage of a framework previously proposed by us. The proposed framework uses GP to provide a good solution to combine multiple textual sources of evidence associated with the Web images. Experiments performed using a collection with more than 195,000 images extracted from the Web showed that our
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.