In this work, an active screen plasma discharge system based technology was incorporated in a PECVD reactor for DLC films growth, making it a new development in DLC films deposition. In this case, the active screen system is used to seek better electrons confinement, which might result in high ions density due to the collisions number increase, leading to a possible increase in ionization. DLC films were grown on steel substrates, using two variations of this system. In order to enhance adhesion between coating and substrate, a silicon interlayer was deposited, using different bias voltages. Morphological and structural characterization was performed by scanning electron microscopy, optical profilometry and Raman scattering spectroscopy. Tribological tests were performed by nanohardness, scratch and wear tests. Results showed that the plasma confinement promoted good films adhesion, which may be related to a high sub-implantation. This might be a consequence of the pressure decrease, as well as, to the ions energy distribution narrowing.
Diamond-like carbon (DLC) films are widely known for their attractive properties. High adhesion between coating and substrate is necessary to ensure these properties. The bombardment by energetic species during growth tends to generate high intrinsic compressive stresses levels, which have several consequences in coating performance. However, this problem can be solved with the deposition of a thin interlayer with intermediary properties. In this work, films were grown on M2 steel using a modified plasma enhanced chemical vapor deposition PECVD pulsed-DC discharge. In order to improve the coating adherence on the substrate, a silicon interlayer was deposited varying the growth time, which generated different interlayer thickness. Tribological tests were performed to study adhesion and friction gradient. Raman spectroscopy was used to verify the structural arrangement of carbon atoms. The results showed that thickness variation in silicon interlayer leads to significative changes in adhesion between coating and substrate.
Excellent tribological properties of hard materials surface are desirable in several sectors of industry. Diamond-like carbon (DLC) coatings are well known for their low friction, excellent wear resistance, and high hardness. In this work, DLC films were deposited on AISI M2 steel using a modified PECVD pulsed-DC discharge. Multilayer of carbon and silicon were grown, alternately. Samples were produced with different layer thickness for carbon and silicon, and the same parameters for each material layer, in order to investigate friction coefficient in each layer, evaluate rate deposition variation and the gradient behavior of different layers. Raman spectroscopy was used to verify the structural arrangement of carbon atoms. The films were also characterized by scanning electron microscopy and EDX. Tribological tests were performed to observe adhesion between layers and substrate, friction, and wear. The results showed the variation of friction coefficient and that deposition rate declines when increasing number of layers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.