In human biometeorology, the integration of several microclimatic variables as a combined index facilitates the understanding of how users perceive thermal environments. Indices, such as the physiological equivalent temperature (PET) index, translate the combined effects of meteorological variables on humans in terms of thermal stress or comfort and serve as important aids to climate-responsive urban and regional planning as well as heat stress and thermal comfort analyses. However, there is a need for adjusting proposed comfort/stress ranges of a given index when using it in different climatic contexts. The purpose of this study is to present a preliminary calibration procedure for the PET index for three different climatic regions: Curitiba, Brazil, a subtropical location; Rio de Janeiro, Brazil, a tropical city; and Glasgow, UK, a high-latitude location. Field studies have been carried out by the authors according to a similar protocol and using similar equipment, yielding actual thermal sensation votes and microclimate data, post-processed as PET data. The calibration procedure uses exclusively thermal sensation data as reported by pedestrians during outdoor comfort campaigns and concurrent microclimatic data recorded during the interviews. PET comfort/stress classes differ among the three locations and, in general, are less restrictive as in the original ranges proposed by the index developers.
To understand thermal preferences and to define a preliminary outdoor comfort range for the local population of Glasgow, UK, an extensive series of measurements and surveys was carried out during 19 monitoring campaigns from winter through summer 2011 at six different monitoring points in pedestrian areas of downtown Glasgow. For data collection, a Davis Vantage Pro2 weather station equipped with temperature and humidity sensors, cup anemometer with wind vane, silicon pyranometer and globe thermometer was employed. Predictions of the outdoor thermal index PET (physiologically equivalent temperature) correlated closely to the actual thermal votes of respondents. Using concurrent measurements from a second Davis Vantage Pro2 weather station placed in a rural setting approximately 15 km from the urban area, comparisons were drawn with regard to daytime thermal comfort levels and urban-rural temperature differences (∆T(u-r)) for the various sites. The urban sites exhibited a consistent lower level of thermal discomfort during daytime. No discernible effect of urban form attributes in terms of the sky-view factor were observed on ∆Tu-r or on the relative difference of the adjusted predicted percentage of dissatisfied (PPD*).
Aimed at climate-responsive urban design for tropical areas, the paper attempts to answer the question whether the site-related context affects in some way the perceptual assessment of the microclimate by users of outdoor spaces. Our hypothesis was that visual cues resulting from urban design are important components of the outdoor thermal perception. Monitoring was carried out alongside the administration of standard comfort questionnaires throughout summer periods in 2012-2015 in pedestrian areas of downtown Rio de Janeiro (22° 54 10 S, 43° 12 27 W), Brazil. Campaigns took place at different points, pre-defined in respect of urban geometry attributes. For the measurements, a Davis Vantage Pro2 weather station was employed to which a gray globe thermometer was attached. Two thermal indices were used for assessing the overall meteorological conditions and comfort levels in the outdoor locations: physiological equivalent temperature (PET) and universal thermal climate index (UTCI). Our results suggest that thermal sensation in Rio depends to a large extent on the thermal environment as described by air temperature, PET, or UTCI, and that urban geometry (expressed by the sky-view factor (SVF)) may modify this relationship with increased building density associated to warmer sensation votes under moderate heat stress conditions. This relationship however reverses under strong heat stress with warmer sensations in less obstructed locations, and disappears completely under still higher heat stress, where meteorological conditions, and not the site's SVF, will drive thermal sensation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.