Highlights d New gene flow into small, isolated guppy populations led to increases in abundance d Mark-recapture and pedigree data show high hybrid survival and reproductive success d Candidate adaptive alleles resist introgression more than neutral expectations d Gene flow can rescue small populations without erasing adaptive variation
The ecological and evolutionary consequences of extreme events are poorly understood. Here, we tested predictions about species persistence and population genomic change in aquatic insects in 14 Colorado mountain streams across a hydrological disturbance gradient caused by a one in 500-year rainfall event. Taxa persistence ranged from 39 to 77% across sites and declined with increasing disturbance in relation to species' resistance and resilience traits. For taxa with mobile larvae and terrestrial adult stages present at the time of the flood, average persistence was 84% compared to 25% for immobile taxa that lacked terrestrial adults. For two of six species analysed, genomic diversity (allelic richness) declined after the event. For one species it greatly expanded, suggesting resilience via re-colonisation from upstream populations. Thus, while resistance and resilience traits can explain species persistence to extreme disturbance, population genomic change varies among species, challenging generalisations about evolutionary responses to extreme events at landscape scales.
Urbanization is a major factor driving habitat fragmentation and connectivity loss in wildlife. However, the impacts of urbanization on connectivity can vary among species and even populations due to differences in local landscape characteristics, and our ability to detect these relationships may depend on the spatial scale at which they are measured. Bobcats (Lynx rufus) are relatively sensitive to urbanization and the status of bobcat populations is an important indicator of connectivity in urban coastal southern California. We genotyped 271 bobcats at 13,520 SNP loci to conduct a replicated landscape resistance analysis in five genetically distinct populations. We tested urban and natural factors potentially influencing individual connectivity in each population separately, as well as study–wide. Overall, landscape genomic effects were most frequently detected at the study–wide spatial scale, with urban land cover (measured as impervious surface) having negative effects and topographic roughness having positive effects on gene flow. The negative effect of urban land cover on connectivity was also evident when populations were analyzed separately despite varying substantially in spatial area and the proportion of urban development, confirming a pervasive impact of urbanization largely independent of spatial scale. The effect of urban development was strongest in one population where stream habitat had been lost to development, suggesting that riparian corridors may help mitigate reduced connectivity in urbanizing areas. Our results demonstrate the importance of replicating landscape genetic analyses across populations and considering how landscape genetic effects may vary with spatial scale and local landscape structure.
The flattop mountains (tepuis) of South America are ancient remnants of the Precambrian Guiana Shield plateau. The tepui summits, isolated by their surrounding cliffs that can be up to 1000 m tall, are thought of as "islands in the sky," harboring relict flora and fauna that underwent vicariant speciation due to plateau fragmentation. High endemicity atop tepui summits support the idea of an ancient "Lost World" biota. However, recent work suggests that dispersal between lowlands and summits has occurred long after tepui formation indicating that tepui summits may not be as isolated from the lowlands as researchers have long suggested. Neither view of the origin of the tepui biota (i.e., ancient vicariance vs. recent dispersal) has strong empirical support owing to a lack of studies. We test diversification hypotheses of the Guiana Shield highlands by estimating divergence times of an endemic group of treefrogs, Tepuihyla. We find that diversification of this group does not support an ancient origin for this taxon; instead, divergence times among the highland species are 2-5 Ma. Our data indicate that most highland speciation occurred during the Pliocene. Thus, this unparalleled landscape known as "The Lost World" is inhabited, in part, not by Early Tertiary relicts but neoendemics.
Representation of women in science drops substantially at each career stage, from early student to senior investigator. Disparities in opportunities for women to contribute to research metrics, such as distinguished speaker events and authorship, have been reported in many fields in the U.S.A. and Europe. However, whether female representation in scientific contributions differs in other regions, such as Latin America, is not well understood. In this study, in order to determine whether female authorship is influenced by gender or institutional location of the last (senior) author or by subfield within ecology, we gathered author information from 6849 articles in ten ecological and zoological journals that publish research articles either in or out of Latin America. We found that female authorship has risen marginally since 2002 (27 to 31%), and varies among Latin American countries, but not between Latin America and other regions. Last author gender predicted female co-authorship across all journals and regions, as research groups led by women published with over 60% female co-authors whereas those led by men published with less than 20% female co-authors. Our findings suggest that implicit biases and stereotype threats that women face in male-led laboratories could be sources of female withdrawal and leaky pipelines in ecology and zoology. Accordingly, we encourage every PI to self-evaluate their lifetime percentage of female co-authors. Female role models and cultural shifts–especially by male senior authors–are crucial for female retention and unbiased participation in science.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.