Appliance load monitoring in smart homes has been gaining importance due to its significant advantages in achieving an energy efficient smart grid. The methods to manage such processes can be classified into hardware-based methods, including intrusive load monitoring (ILM) and software-based methods referring to non-intrusive load monitoring (NILM). ILM is based on low-end meter devices attached to home appliances in opposition to NILM techniques, where only a single point of sensing is needed. Although ILM solutions can be relatively expensive, they provide higher efficiency and reliability than NILMs. Moreover, future solutions are expected to be hybrid, combining the benefits of NILM along with individual power measurement by smart plugs and smart appliances. This paper proposes a novel ILM approach for load monitoring that aims to develop an activity recognition system based on IoT architecture. The proposed IoT architecture consists of the appliances layer, perception layer, communication network layer, middleware layer, and application layer. The main function of the appliance recognition module is to label sensor data and allow the implementation of different home applications. Three different classifier models are tested using real data from the UK-DALE dataset: feed-forward neural network (FFNN), long short-term memory (LSTM), and support vector machine (SVM). The developed activities of daily living (ADL) algorithm maps each ADL to a set of criteria depending on the appliance used. The features are extracted according to the consumption in Watt-hours and the times where they are switched on. In the FFNN and the LSTM networks, the accuracy is above 0.9 while around 0.8 for the SVM network. Other experiments are performed to evaluate the classifier model using a new test set. A sensitivity analysis is also carried out to study the impact of the group size on the classifier accuracy.
Internet of Things (IoT) technologies will play an important role in enabling the smart grid achieving its goals in monitoring, protecting, and controlling by incorporating sensors, actuators, and metering devices while supporting various network functions and system automation. In this regard, home energy management systems (HEMS) enable households to better manage energy consumption by providing information about energy usage and allowing more precise control of major appliances. This work proposes a novel framework for IoT based appliance recognition in smart homes. It consists of two parts: training framework and inference framework. The proposed framework allows incorporating different loads in the monitoring system and enables selecting and testing specific parameters related to dataset configuration, feature extraction, and classifier model setting. The work contributes by developing an easy-to-use tool that allows customization of the training/prediction parameters according to the user criterion. Once the data and all its parameters are loaded, a novel feature extraction algorithm is used to obtain a total of ten statistical features. For the classification task, three machine learning models are included: a feed-forward neural network (FFNN), a long short-term memory (LSTM) and a support vector machine (SVM). In addition, the user can apply a set of techniques to overcome the class imbalance, and also measure the influence of the selected features in the classifiers' prediction by performing a feature importance analysis.INDEX TERMS Appliance recognition, frameworks, intrusive load monitoring, internet of things, smart grids, smart homes.
In this work, we an envision Home Energy Management System (HEMS) as a Cyber-Physical System (CPS) architecture including three stages: Data Acquisition, Communication Network, and Data Analytics. In this CPS, monitoring, forecasting, comfort, occupation, and other strategies are conceived to feed a control plane representing the decision-making process. We survey the main technologies and techniques implemented in the recent years for each of the stages, reviewing and identifying the cutting-edge challenges that the research community are currently facing. For the Acquisition part, we define a metering device according to the IEC TS 63297:2021 Standard. We analyze the communication infrastructure as part of beyond 2030 communication era (5G and 6G), and discuss the Analytics stage as the cyber part of the CPS-based HEMS. To conclude, we present a case study in which, using real data collected in an experimental environment, we validate proposed architecture of HEMS in monitoring tasks. Results revealed an accuracy of 99.2% in appliance recognition compared with the state-of-the-art proposals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.