Cryolipolysis is a noninvasive technique of localized fat reduction. Controlled cold exposure is performed in the selective destruction of fat cells. The aim of this study was to investigate the effects of cryolipolysis on adipocytes elimination through histological and sonographic analyses. This study reports the case of a 46-year-old female patient, with complaint of localized abdominal fat and in the preoperative period of abdominoplasty. The patient was submitted to a single 60-minute application of cryolipolysis, temperature of −5°C, on the hypogastrium area, 5 cm below the umbilicus. To study the effects of this treatment, ultrasound images taken before the session and 7, 15, 30, and 45 days after the therapy were analysed. After the abdominoplasty, parts of the treated and the untreated withdrawn abdominal tissues were evaluated macro- and microscopically. In ultrasound images, as well as in macroscopic and histological analyses, significant adipocytes destruction was detected, with consequent fat layer reduction and integrity of areas that were adjacent to the treated tissue. The presence of fibrosis observed during therapy and acknowledged through performed analyses encourages further studies to clarify such finding.
Cryolipolysis is considered a safe and effective procedure, with high patient satisfaction rates, especially when compared to other procedures for localized adiposity, such as high-intensity focused ultrasound and shock waves. Although this statement is present in the literature, the importance of the selection of suitable patients for this type of treatment is not well known. The objective of this study was to discuss the criteria to be considered in the selection of patients who are candidates for cryolipolysis and assess their profile regarding their anthropometric data, age, skin characteristics, cutaneous sensitivity, and risk pathologies for this type of treatment. Assessing the amount of localized adiposity requires safe and validated methods that are significant in measuring results. The aim is to achieve success in the process of reducing adiposity guaranteeing patient satisfaction and assurance of results.
Purpose: to study the effect of whole body mechanical vibration (WBMV) exercise alone or combined with auriculotherapy (AT) in the pain and in the range of movement of the knees of participants with knee osteoarthritis. Authors have reported that these interventions can reduce the pain and increase the muscle strength in various clinical situations. Materials and Methods: The level of pain was evaluated by the visual analogue scale and the range of movement of the knees by goniometry. In five weeks protocols, in the AT intervention, ear points (Shenmen, Kidney, corresponding point-Knee) were stimulated by two seeds (Semen vaccariae), approximated diameter of 1 mm that were previously in an adhesive tape and they were changed every week. The control group had no seeds in the ear's lobe adhesive tape. All the participants were instructed to use the fingers to press (manually) the adhesive tapes for 10 min, three times per day (six days) and to remove the tapes (7th day) before returning to the laboratory. In WBMV intervention, the biomechanical parameters of the mechanical vibration were (i) peak-to-peak displacement (D) with 2.5, 5.0 and 7.5 mm and (ii) frequency ranging from 5 Hz on the first day, increasing by 1 Hz per session, ending with 14 Hz in the last session. The working time was 3 min with 1 min of rest. The evaluations were performed (i) before and after the first session (acute effect) and (ii) before the first (5 Hz) and after the last (14 Hz) session (cumulative effect). Results: A significant (p<0.05) decrease of the level of pain in the participants with knee osteoarthritis treated with WBMV exercise and with the combined intervention (WBMV and AT) was found in the acute and cumulative effects. The pain was importantly reduced due to WBMV exercise alone about 50% and reduced about 16% in the combination with AT, in the acute intervention. In the cumulative intervention, the pain was strongly reduced about 60% due to WBMV exercise alone and about 37% in the combination with AT. Possibility, this decrease in the effect may be related to inhibitory/competitive actions of the two interventions. In the control groups, no alteration on the level of the pain was observed. The range of the movement (knee´s flexion) was not altered in the participants of the all groups. Conclusion: It is possible to conclude that the level of the pain was decreased (acute and cumulative effects), with both interventions, WBMV exercise alone or combined with AT, However, more studies are need to widespread the use of these forms of treatment.
Radiofrequency (RF) treatment appears to be involved in production of new collagen fibrils and the improvement of existing collagen structures; however, the molecular bases of the effect of non-invasive RF on the skin tissue have not been fully elucidated. This study reports the effects of RF associated or not with hydrolyzed collagen (HC) in the skin tissue. Wistar rats were randomly divided into four groups, according to the treatment received: control group (G1, n = 5), no treatment; subjects in group G2 (n = 5) were treated with HC; and capacitive RF was applied to the back of each subject in G3 (n = 5) and RF associated with HC in G4 (n = 5). Biopsies were taken 30 days after treatment and then were histologically processed and studied for inflammatory cell counting, collagen content, and morphometry. In addition, FGF2, CD105, and COX-2 expression was assessed by immunohistochemical staining. The most relevant changes were the increase in cellularity and accumulation of intercellular substance in RF-treated animals (G3 and G4). The greatest dermis thickness rate was observed in G4, followed by G3 and G2 (p < 0.05). RF-treated skins (G3 and G4) exhibited a significant overexpression of FGF2 (p < 0.0001) and increased microvessel density (p < 0.0001) in comparison with G1 and G2. Moreover, the amount of COX-2 was significantly higher (p < 0.0001) in dermis of RF-treated areas compared to G1 and G2, and demonstrated differences in G3 (RF) compared to G4 (RF + HC) (p < 0.0001). Our results suggests that RF treatment associated or not with HC induces FGF2 overexpression, promotes neoangiogenesis and modulates the COX-2 expression, subsequently promotes neocollagenesis, and increased thickness rate of dermis.
Extracorporeal shock wave therapy (ESWT) has been extensively studied for its multiple biological properties, and although it is widely applied in esthetical procedures, little is known about its effects on the epidermis and dermis. In this study, a histological and immunohistochemical study of the effects of ESWT was performed on rat skin. Forty-five female rats were treated with one or two sessions of ESWT and sacrificed on days 1, 7, 14, and 21 after treatment. The samples were histologically processed and then morphometric analyses were performed to assess the epidermis, dermis, and subcutaneous fat tissue thickness. Immunohistochemical reactions were also performed against the antibodies: basic fibroblastic growth factor (FGF2), its receptor (FGFR1), and α-smooth muscle actin. Slides were scanned and digitally assessed, to determine the microvessel density (MVD) and digital scoring of the immunohistochemical staining. The results showed that ESWT produced a significantly higher collagen content, MVD, and epidermis and dermis thickness than the control, non-treated group. Both in epidermis and dermis, FGF2 was overexpressed in the ESWT-treated groups, whereas FGFR1 was increased only in the group treated with two ESWT sessions at 21-days post-treatment. The ESWT-treated groups have also shown diminished thickness of subcutaneous fat tissue. In conclusion, ESWT induces neocollagenesis and neoangiogenesis, and upregulates the FGF2 expression, particularly in the groups treated with two sessions. Furthermore, it was demonstrated that overexpression of FGF2 on skins treated with ESWT seems to be a key role on its mechanism of action.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.