The effects of topical and systemic administration of 5-aminolevulinic acid (ALA) were examined in several murine tumor systems with regard to porphyrin accumulation kinetics in tumor, skin and blood, vascular and tumor cell photosensitization and tumor response after light exposure. Marked, transient increases in porphyrin levels were observed in tumor and skin after systemic and topical ALA. Rapid, transient, dose-dependent porphyrin increases were also observed in blood; these were pronounced after systemic ALA injection and mild after topical application. They were highest within 1 h after ALA injection, thereafter declining rapidly. This matched the clearing kinetics of injected exogenous protoporphyrin IX (PpIX). Initially, vascular photosensitivity changed inversely to blood porphyrin levels, increasing gradually up to 5 h post-ALA, as porphyrin was clearing from the bloodstream. This pattern was again matched by injected, exogenous PpIX. After therapeutic tumor treatment vascular disruption of the tumor bed, while observed, was incomplete, especially at the tumor base. Minimal direct tumor cell kill was found at low photodynamic therapy (PDT) doses (250 mg/kg ALA, 135 J/cm2 light). Significant, but limited (< 1 log) direct photodynamic tumor cell kill was obtained when the PDT dose was raised to 500 mg/kg systemic ALA, followed 3 h later by 270 J/cm2, a dose that was however toxic to the animals. The further reduction of clonogenic tumor cells over 24 h following treatment was moderate and probably limited by the incomplete disruption of the vasculature. Tumor responses were highest when light treatment was carried out at the time of highest tumor porphyrin content rather than at the time of highest vascular photosensitivity. Tumor destruction did not reach the tumor base, regardless of treatment conditions.
We measured the transient and long-term changes of permeability of full-thickness porcine skin after the application of a single or a train of electric pulses, as the basis for optimization of the electrical parameters for enhancing transdermal drug or gene delivery by electroporation. Two electrodes were attached to the stratum corneum of excised skin for transdermal electric pulse delivery and impedance measurement. Both transient and long-term permeabilization were found to be dependent on the electrical exposure dose, i.e., the product of pulse voltage and cumulative pulsing (exposure) time. Skin resistance dropped to about 20% of its prepulsing value when pulsed beyond a critical dosage of 0.4 V-s (with 20-40 V across each skin path), but recovered rapidly within seconds after the pulse. Long-term permeabilization of the skin required repeated pulsing with a minimum potential of 160 V (80 V across each skin path). The maximum long-term resistance drop, to 35% of the initial value, required a dose greater than 200 V-s, recovering slowly and seldom completely in tens of minutes to hours. The decrease and recovery of the resistance were dependent on the frequency and pulse length only for low-dose electrical exposure.
We used electric pulses to permeabilize porcine stratum corneum and demonstrate enhanced epidermal transport of methylene blue, a water-soluble cationic dye. Electrodes were placed on the outer surface of excised full-thickness porcine skin, and methylene blue was applied to the skin beneath the positive electrode; 1 ms pulses of up to 240 V were delivered at frequencies of 20-100 Hz for up to 30 min. The amount of dye in a skin sample was determined from absorbance spectra of dissolved punch biopsy sections. Penetration depth and concentration of the dye were measured with light and fluorescence microscopy of cryosections. At an electric exposure dose VT (applied voltage x frequency x pulse width x treatment duration) of about 4700 Vs, there is a threshold for efficient drug delivery. Increasing the applied voltage or field application time resulted in increased dye penetration. Transport induced by electric pulses was more than an order of magnitude greater than that seen following iontophoresis. We believe that the enhanced cutaneous delivery of methylene blue is due to a combination of de novo permeabilization of the stratum corneum by electric pulses, passive diffusion through the permeabilization sites, and electrophoretic and electroosmotic transport by the electric pulses. Pulsed electric fields may have important applications for drug delivery in a variety of fields where topical drug delivery is a goal.
BackgroundAcute invasive fungal sinusitis (AIFS) is an aggressive disease that requires prompt diagnosis and multidisciplinary treatment given its rapid progression. However, there is currently no consensus on diagnosis, prognosis, and management strategies for AIFS, with multiple modalities routinely employed. The purpose of this multi‐institutional and multidisciplinary evidence‐based review with recommendations (EBRR) is to thoroughly review the literature on AIFS, summarize the existing evidence, and provide recommendations on the management of AIFS.MethodsThe PubMed, EMBASE, and Cochrane databases were systematically reviewed from inception through January 2022. Studies evaluating management for orbital, non‐sinonasal head and neck, and intracranial manifestations of AIFS were included. An iterative review process was utilized in accordance with EBRR guidelines. Levels of evidence and recommendations on management principles for AIFS were generated.ResultsA review and evaluation of published literature was performed on 12 topics surrounding AIFS (signs and symptoms, laboratory and microbiology diagnostics, endoscopy, imaging, pathology, surgery, medical therapy, management of extrasinus extension, reversing immunosuppression, and outcomes and survival). The aggregate quality of evidence was varied across reviewed domains.ConclusionBased on the currently available evidence, judicious utilization of a combination of history and physical examination, laboratory and histopathologic techniques, and endoscopy provide the cornerstone for accurate diagnosis of AIFS. In addition, AIFS is optimally managed by a multidisciplinary team via a combination of surgery (including resection whenever possible), antifungal therapy, and correcting sources of immunosuppression. Higher quality (i.e., prospective) studies are needed to better define the roles of each modality and determine diagnosis and treatment algorithms.
Selectivity of photodynamic therapy can be improved with localized photosensitizer delivery, but topical administration is restricted by poor diffusion across the stratum corneum. We used electric pulses to increase transdermal transport of δ‐aminolevulinic acid (ALA), a precursor to the photosensitizer protoporphyrin IX (PpIX). ALA‐filled electrodes were attached to the surface of excised porcine skin or the dorsal surface of mice. Pulses were administered and, in some in vivo cases, a continuous DC potential (6 V) was concomitantly applied. For in vitro14C ALA penetration, 10 μm layers parallel to the stratum corneum were assayed by liquid scintillation analysis, and 10 μm cross sections were examined autoradiographically. As the electrical dose (voltage × frequency × pulse width × treatment duration) increased, there was an increase in penetration depth. In vivo delivery was assayed by measuring the fluorescence of PpIX in skin samples. A greater than two‐fold enhancement of PpIX production with electroporative delivery was seen versus that obtained with passive delivery. Superimposition of a DC potential resulted in a nearly three‐fold enhancement of PpIX production versus passive delivery. Levels were higher than the sum of PpIX detected after pulse‐alone and DC‐alone delivery. Electroporation and electrophoresis are likely factors in electrically enhanced delivery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.