Laser application either before or after fatigue reduced the post-fatigue concentrations of serum lactate and CK. The results were more pronounced in the post-fatigue laser group.
Purpose: Nontransmissible chronic diseases, such as diabetes mellitus (DM) and nephropathy, affect a significant portion of the population, often treated due to injuries that require healing and regeneration. To create an experimental model of associated comorbidities, for healing and regeneration studies, protocols for induction of nephropathy by ischemia and reperfusion (I/R) and induction of DM by injection of streptozotocin (STZ) were associated. Methods: Sixty-four mice ( Mus musculus ), female, adult, Swiss strain, weighing approximately 20 g, were divided into four groups: G1: control (n = 24), G2: nephropathy group (N) (n = 7), G3, DM (n = 9), and G4: N+DM (n = 24). Arteriovenous stenosis (I/R) of the left kidney was performed as the first protocol. The animals received a hyperlipidemic diet for 7 days after the injection of STZ (150 mg/kg, via i.p.) and an aqueous glucose solution (10%) for 24 h. The animals in the G3 and G4 groups were observed for 14 days before receiving the diet and STZ. The evolution of nephropathy was observed using a urine test strip and the DM, through the analysis of blood glucose with a reagent strip on a digital monitor. Results: The ischemic induction protocols of nephropathy and DM with STZ, associated, were sustainable, low-cost, and without deaths. There were alterations compatible with initial renal alterations, in the first 14 days, such as increased urinary density, pH alteration, presence of glucose, proteins and leukocytes, when compared to the control group. DM was confirmed by the presence of hyperglycemia 7 days after induction and its evolution after 14 days. The animals in the G4 group showed constant weight loss when compared to the other groups. It was possible to observe morphological alterations in the kidneys submitted to I/R, regarding coloration, during surgery and after the end of the observation period, in the volume and size of the left kidney, when compared to the contralateral kidney. Conclusions: It was possible to induce nephropathy and DM associated in the same animal, in a simple way, confirmed with rapid tests, without losses, providing a basis for future studies.
To evaluate and describe the effect of electrophysical resources laser therapy (LLLT), intravascular laser blood irradiation (ILIB), and cryotherapy on the healing process of neurotendinous injury, as well as possible systemic changes, in the experimental model of type 1 diabetes associated with kidney injury. Methods: The animals were randomized into four groups: G1) healthy control with untreated injury; G2) healthy control with injury and treatment; G3) disease control with untreated lesion; G4) disease with injury and treatment. Furthermore, the treated groups were divided into three, according to the type of treatment. All animals were induced to neurotendinous injury and treated according to the therapeutic protocols. Healing and inflammation were analyzed by semiquantitative histopathological study. Results: It was observed in sick animals treated with cryotherapy and ILIB reduction of inflammatory exudate, presence of fibroblasts and organization of collagen, when compared to the effects of LLLT. Moreover, there was reduction in glycemic levels in the group treated with ILIB. Conclusions: Cryotherapy promoted reduction in inflammatory exudate and organization of collagen fibers, in addition to the absence of signs of tissue necrosis, in the groups treated with and without the disease. ILIB therapy showed the same findings associated with significant reduction in glycemic levels in the group of diseased animals. The application of LLLT showed increased inflammatory exudate, low organization of collagen fibers and low sign of tissue degeneration and necrosis.This study in a model of associated diseases (diabetes and kidney disease) whose effects of electrophysical resources studied after neurotendinous injury allows us to verify histopathological variables suggestive of patients with the same comorbidities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.