A Cr(VI)-resistant yeast was isolated from tanning liquors from a leather factory in Leon, Guanajuato, Mexico. Based on morphological and physiological analyses and the D1/D2 domain sequence of the 26S rDNA, the yeast was identified as Candida maltosa. Resistance of the strain to high Cr(VI) concentrations and its ability to chemically reduce chromium was studied. When compared to the three laboratory yeasts Candida albicans, Saccharomyces cerevisiae and Yarrowia lipolytica, the C. maltosa strain was found to tolerate chromate concentrations as high as 100 micro g/ml. In addition to this phenotypic trait, the C. maltosa strain showed ability to reduce Cr(VI). Chromate reduction occurred both in intact cells (grown in culture medium or in soil containing chromate) as well as in cell-free extracts. NADH-dependent chromate reductase activity was found associated with soluble protein and, to a lesser extent, with the membrane fraction.
Colletotrichum gloeosporioides is the common causal agent of anthracnose in papaya (Carica papaya L.) fruits, and infection by this fungal pathogen results in severe post-harvest losses. In the Yucatán peninsula (Mexico) a different Colletotrichum species was isolated from papaya fruits with atypical anthracnose lesions. The DNAs from a variety of Colletotrichum isolates producing typical and atypical lesions, respectively, were amplified by PCR with C.gloeosporioides-specific primers. All isolates from typical anthracnose lesions yielded a 450 bp PCR product, but DNAs from isolates with atypical lesions failed to produce an amplification product. For further characterization, the rDNA 5.8S-ITS region was amplified by PCR and processed for sequencing and RFLP analysis, respectively, to verify the identity of the papaya anthracnose pathogens. The results revealed unequivocally the existence of two Colletotrichum species causing anthracnose lesions on papaya fruits: C. gloeosporioides and C. capsici. PCR-RFLP using the restriction endonuclease MspI reliably reproduced restriction patterns specific for C. capsici or C. gloeosporioides. The generation of RFLP patterns by MspI (or AluI or RsaI) is a rapid, accurate, and unequivocal method for the detection and differentiation of these two Colletotrichum species.
Two chromate-resistant filamentous fungi, strains H13 and Ed8, were selected from seven independent fungal isolates indigenous to Cr(VI)-contaminated soil because of their ability to decrease hexavalent chromium levels in the growth medium. Morphophysiological studies identified strain H13 as a Penicillium sp. isolate and Ed8 as an Aspergillus sp. isolate. When incubated in minimal medium with glucose as a carbon source and in the presence of 50 microg/mL Cr(VI), these strains caused complete disappearance of Cr(VI) in the growth medium after about 72 h of incubation. Total chromium concentration in growth medium was constant during culture growth, and no accumulation of chromium in fungal biomass was observed. Quantitative determinations of oxidized and reduced chromium species during the reduction process revealed stoichiometric conversion of Cr(VI) to Cr(III). A decrease in Cr(VI) levels from industrial wastes was also induced by Ed8 or H13 biomass. These results indicate that chromate-resistant filamentous fungi with Cr(VI)-reducing capability could be useful for the removal of Cr(VI) contamination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.