1. Dreissenid mussels (quagga mussels, Dreissena bugensis, and zebra mussels, D. polymorpha) are invasive species that function as ecosystem engineers in the Laurentian Great Lakes. Dreissena are increasingly abundant on silt, sand and other soft substrates; by altering benthic habitat, these mussels can alter benthic community structure. 2. We used laboratory mesocosm experiments to examine the effects of soft-sediment Dreissena clusters on the habitat preference of Hexagenia, a native burrowing mayfly that is an important food source to fish. We conducted three experiments to test whether Hexagenia: (1) select for bare sediment, soft sediment covered with live Dreissena (added structure and food resources) or soft sediment with clusters made of empty Dreissena shells (added structure only), (2) prefer a specific density of live Dreissena on soft sediment and (3) select for or avoid sediment with an accumulation of empty Dreissena shells. 3. Contrary to initial expectations, we found that Hexagenia selected for sediment covered with live Dreissena clusters, followed by empty Dreissena shells clusters, and lastly what was previously thought to be the preferred habitat, bare sediment. Not only did Hexagenia prefer Dreissena-covered sediment, but they also preferred high densities of Dreissena. 4. We also experimentally tested the effects of Dreissena-covered soft sediment on the availability of Hexagenia to fish. We had three treatment levels representing three distinct habitat types: (1) bare sediment (no Dreissena) treatment in which water was turbid because of mayfly activity, (2) Dreissena-covered sediment treatment in which water was clear because of Dreissena filtration and (3) Dreissena-covered sediment with added turbidity. We found that in low light conditions, similar to many locations where both organisms are found to co-occur, both yellow perch and round goby consumption of Hexagenia significantly decreased when Dreissena covered the bottom sediment. 5. These results suggest that by choosing Dreissena-covered habitat, Hexagenia receive protection from fish predation in turbid ⁄ low light systems. However, protection from predation cannot be the only reason Hexagenia select Dreissena-covered sediments, as Hexagenia selected for live clusters more often than empty clusters and may be a result of additional food resources.
Variability in abiotic and biotic factors during larval stages has profound impacts on fish recruitment. In Lake Michigan, where the composition of lower trophic levels has undergone considerable changes in the past decade, managers are concerned that fish recruitment could be negatively affected. We hypothesized that spatial variation in Lake Michigan larval fish density and growth can be explained by various environmental predictor variables. In July 2015, we sampled larval fish and zooplankton at 24 sites (distributed among eight transects) around Lake Michigan. We measured larval fish densities and estimated growth rates and diets of the two most abundant species: the Alewife Alosa pseudoharengus and Bloater Coregonus hoyi (prey fish that represented 89% and 4% of the total catch, respectively). Larval Alewife densities at a given site ranged from 0 to 42.57 larvae/100 m3, but no explanatory variables explained the variation. Alewife mean growth rate equaled 0.50 mm/d, and fish age and zooplankton density best explained growth variation across sites. Larval Bloater densities ranged from 0 to 1.16 larvae/100 m3, and mean growth rate was 0.21 mm/d. Across all sites, 67% of larval Alewife stomachs were empty, whereas only 16% of Bloater stomachs were empty. Larval fish growth rates observed in our study were at least 40% slower than those reported in previous decades for both Alewife and Bloater. Worsening prey environment for pelagic larvae, such as Alewife and Bloater, during the era of abundant dreissenid mussels could reduce the probability of strong year‐classes, which in turn may affect growth and survival of recreationally important salmonine predators.
In the Laurentian Great Lakes, specimens of Eurytemora have been reported as E. affinis since its invasion in the late 1950s. During an intensive collection of aquatic invertebrates for morphological and molecular identification in Western Lake Erie in 2012-2013, several specimens of Eurytemora were collected. Analysis of these specimens identified them as the recently described species E. carolleeae Alekseev and Souissi 2011. This result led us to assess E. carolleeae's identifying features, geographic distribution and historical presence in the Laurentian Great Lakes in view of its recent description in 2011. Cytochrome oxidase I (COI) DNA sequences of Eurytemora specimens were identified as closer (2 - 4% different) to recently described E. carolleeae than to most Eurytemora affinis sequences (14% different). Eurytemora from other areas of the Great Lakes and from North American rivers as far west as South Dakota (Missouri River) and east to Delaware (Christina River) also keyed to E. carolleeae. Morphological analysis of archival specimens from 1962 and from all the Great Lakes were identified as E. carolleeae. Additionally, Eurytemora drawings in previous publications from studies in the Holarctic region were reassessed to determine if these specimens were E. carolleeae. Additional morphological characters that may distinguish the North American E. carolleeae from other taxa are also described. We conclude that E. carolleeae is the correct name for the species of Eurytemora that has inhabited the Great Lakes since its invasion, as established by both morphological and COI sequence comparisons to reference keys and sequence databases in present and archival specimens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.