A hallmark of all herpesvirus is the ability to exist in either a latent, or lytic, state of replication, enabling the lifelong infection of its host. Kaposi's sarcoma (KS)-associated herpesvirus (KSHV) can efficiently establish a latent infection in a variety of cell types in vitro, making it a valuable model for the study of latency and reactivation. To facilitate the identification of KSHV lytic replication, and allow subsequent experiments with live cells, a recombinant virus, rKSHV.219, was constructed using JSC-1 cells that expresses the red fluorescent protein (RFP) from the KSHV lytic PAN promoter, the green fluorescent protein (GFP) from the EF-1alpha promoter, and with the gene for puromycin resistance as a selectable marker. rKSHV.219 from JSC-1 cells was used to infect Vero cells for purification of the recombinant virus. Vero cells were also used for the production of rKSHV.219 at levels of 10(5)-10(6) infectious units (IU) of virus per milliliter using a combination of KSHV/RTA expressed from a baculovirus vector, BacK50, and butyrate. Virus produced from Vero cells was used to infect human fibroblasts (HF), 293, DU145, T24, HaCaT, and HEp-2 cells, and in all cells except 293 cells, only a latent infection was established with GFP expression, but no RFP expression. In 293 cells, 10-15% of cells showed lytic gene expression. Both primary and immortalized microvascular endothelial cells (MVEC) were also infected with rKSHV.219, and reduced spontaneous lytic replication was found in immortalized cells. In all cells used in this study, rKSHV.219 efficiently established latent infections from which the virus could be reactivated to productive lytic replication. This work also demonstrated strong synergy between KSHV/RTA and butyrate for the activation of KSHV lytic replication and the production of infectious virus.
We investigated the effects of pharmacological and lentivirus-induced immunosuppression on bluetongue virus (BTV) pathogenesis as a mechanism for virus persistence and induction of clinical disease. Immunologically normal and immunosuppressed sheep were infected subcutaneously with BTV serotype 3 (BTV-3), a foreign isolate with unknown pathogenicity in North American livestock, and with North American serotype 11 (BTV-11). Erythrocyte-associated BTV RNA was detected earlier and at greater concentrations in sheep treated with immunosuppressive drugs. Similarly, viral RNA and infectious virus were detected in blood monocytes earlier and at higher frequency in immunosuppressed animals: as many as 1 in 970 monocytes revealed BTV RNA at peak viremia, compared to <1 in 105 monocytes from immunocompetent sheep. Animals infected with BTV-3 had a higher virus burden in monocytes and lesions of greater severity than those infected with BTV-11. BTV RNA was detected by in situ hybridization in vascular endothelial cells and cells of monocyte lineage, but only in tissues from immunocompromised animals, and was most abundant in animals infected with BTV-3. In contrast, reverse transcription-in situ PCR showed BTV RNA from both viral serotypes in high numbers of tissue leukocytes and vascular endothelial cells from both immunosuppressed and, to a lesser extent, immunocompetent animals. Collectively, these findings show that BTV infection is widely distributed during acute infection but replication is highly restricted in animals with normal immunity. These findings also suggest that in addition to virulence factors that define viral serotypes, immunosuppression could play a role in the natural history of orbivirus infection, allowing for higher virus burden, increased virus persistence, and greater potential for acquisition of virus by the arthropod vector.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.