Endodontic irrigating solutions may interact chemically with one another. This is important, because even when solutions are not admixed, they will come into contact with one another during an alternating irrigation technique, forming unwanted by-products, which may be toxic or irritant. Mixing or alternating irrigants can also reduce their ability to clean and disinfect the root canal system of teeth by changing their chemical structure with subsequent loss of the active agent, or by inducing precipitate formation in the root canal system. Precipitates occlude dental tubules, resulting in less penetration of antimicrobials and a loss of disinfection efficacy. Sodium hypochlorite is not only a very reactive oxidizing agent, but is also the most commonly used endodontic irrigant. As such, many interactions occurring between it and other irrigants, chelators and other antimicrobials, may occur. Of particular interest is the interaction between sodium hypochlorite and the chelators EDTA, citric acid and etidronate and between sodium hypochlorite and the antimicrobials chlorhexidine, alexidine, MTAD and octenisept.
Aim To identify chelators which when mixed with sodium hypochlorite (NaOCl) are stable, exhibiting minimal loss of free available chlorine (FAC) over 80 min and to further investigate potential mixtures by assessing FAC over 18 h and the capacity to remove smear layer. Methodology 0.25 mol L−1 EDTA (10%), 0.25 mol L−1 EGTA (egtazic acid), 0.25 mol L−1 CDTA (cyclohexanediaminetetraacetic acid), 0.25 mol L−1 DTPA (pentetic acid), 0.5 mol L−1 ATMP (aminotri(methylene phosphonic acid)) and 1 mol L−1 HPAA, (hydroxyphosphonoacetic acid), all at alkaline pH, were mixed equally with 5% NaOCl. 0.5 mol L−1 alkaline clodronate and 0.5 mol L−1 Na4etidronate (15%) were mixed equally with 10% NaOCl. For all mixtures, the pH and temperature were measured over 80 min and additionally for the clodronate mixture over 18 h. Iodometric titration was used to measure the FAC of all mixtures except for HPAA. The following were compared with respect to their ability to remove smear layer: 1 mol L−1 clodronate + 10% NaOCl, 0.5 mol L−1 clodronate + 10% NaOCl, 1 mol L−1 etidronate + 10% NaOCl, 0.5 mol L−1 clodronate + 10% NaOCl and the sequences 5% NaOCl/17% EDTA/5% NaOCl and 5% NaOCl/17% EDTA. The area fraction occupied by open dentinal tubules as a percentage of the total area (% AF) from scanning electron microscopy micrographs was calculated using Image J. The results were statistically analysed with alpha set at 0.05. Results Compared to its control, the mixture 0.5 mol L−1 clodronate + 10% NaOCl lost no FAC over 18 h (P > 0.05). The FAC of 0.25 mol L−1 CDTA mixed with 5% NaOCl fell to 96%, 92%, 75% and 4.9% at 20, 40, 60 and 80 min, respectively. Temperature rises were observed in all cases except in the etidronate and clodronate mixtures. Only in the clodronate mixture did the pH remain above pH 12 for the whole experiment. Although smear layer was removed, the % AF in 1 mol L−1 clodronate + 10% NaOCl, 0.5 mol L−1 clodronate + 10% NaOCl, 1 mol L−1 etidronate + 10% NaOCl was less than for 0.5 mol L−1 etidronate + 10% NaOCl and 5% NaOCl/17% EDTA/5% NaOCl and 5% NaOCl/17% EDTA. Conclusion Alkaline 0.5 mol L−1 clodronate mixed equally with 10% NaOCl has potential for use in continuous chelation, based on this assessment of stability and smear layer removal. Further research is needed to establish its efficacy and safety.
Numerous in vitro studies highlight the role of quorum sensing in the pathogenicity and virulence of biofilms. This narrative review discusses general principles in quorum sensing, including Gram-positive and Gram-negative models and the influence of flow, before focusing on quorum sensing and quorum quenching in cariogenic and periodontopathic biofilms. In cariology, quorum sensing centres on the role of Streptococcus mutans, and to a lesser extent Candida albicans, while Fusobacterium nucleatum and the red complex pathogens form the basis of the majority of the quorum sensing research on periodontopathic biofilms. Recent research highlights developments in quorum quenching, also known as quorum sensing inhibition, as a potential antimicrobial tool to attenuate the pathogenicity of oral biofilms by the inhibition of bacterial signalling networks. Quorum quenchers may be synthetic or derived from plant or bacterial products, or human saliva. Furthermore, biofilm inhibition by coating quorum sensing inhibitors on dental implant surfaces provides another potential application of quorum quenching technologies in dentistry. While the body of predominantly in vitro research presented here is steadily growing, the clinical value of quorum sensing inhibitors against in vivo oral polymicrobial biofilms needs to be ascertained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.