Vector-borne flaviviruses are emerging threats to human health. For successful transmission, the virus needs to efficiently enter mosquito cells and replicate within and escape several tissue barriers while mosquitoes elicit major transcriptional responses to flavivirus infection. This process will be affected not only by the specific mosquitopathogen pairing but also by variation in key environmental variables such as temperature. Thus far, few studies have examined the molecular responses triggered by temperature and how these responses modify infection outcomes, despite substantial evidence showing strong relationships between temperature and transmission in a diversity of systems. To define the host transcriptional changes associated with temperature variation during the early infection process, we compared the transcriptome of mosquito midgut samples from mosquitoes exposed to Zika virus (ZIKV) and nonexposed mosquitoes housed at three different temperatures (20, 28, and 36 • C). While the high-temperature samples did not show significant changes from those with standard rearing conditions (28 • C) 48 h post-exposure, the transcriptome profile of mosquitoes housed at 20 • C was dramatically different. The expression of genes most altered by the cooler temperature involved aspects of blood-meal digestion, ROS metabolism, and mosquito innate immunity. Further, we did not find significant differences in the viral RNA copy number between 24 and 48 h post-exposure at 20 • C, suggesting that ZIKV replication is limited by cold-induced changes to the mosquito midgut environment. In ZIKV-exposed mosquitoes, vitellogenin, a lipid carrier protein, was most up-regulated at 20 • C. Our results provide a deeper understanding of the temperature-triggered transcriptional changes in Aedes aegypti and can be used to further define the molecular mechanisms driven by environmental temperature variation.
Qualidade de vida de mulheres tratadas de câncer de mama em uma cidade do nordeste do BrasilQuality of life of women treated for breast cancer in a city of the northeast of Brazil
The simultaneous saccharification and fermentation (SSF) process is a promising strategy to obtain ethanol from cellulosic biomass. In this study, sugarcane bagasse was supplemented with ricotta whey to increase the sugar, vitamin, and trace metal concentrations in the fermentation medium. The optimum conditions for SSF ethanol production from a mixture of sugarcane bagasse and ricotta whey produced by Kluyveromyces marxianus CCT 7735 were evaluated considering five factors: cellulase concentration, cellulosic biomass concentration, pH, temperature, and agitation. The highest ethanol yield was 49.65 g/L with a cellulosic biomass of 80 g/L, pH value of 5.05, agitation at 65 rpm and temperature of 39.2ºC. The results demonstrated that a mixture of the cellulosic residue of sugarcane bagasse and ricotta whey is promising for ethanol production because the ethanol yield in the mixture was higher than that in single substrate of sugarcane bagasse.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.