Pteropods are abundant zooplankton in the Western Antarctic Peninsula (WAP) and important grazers of phytoplankton and prey for higher trophic levels. We analyzed long-term trends in summer (January-February) abundance of WAP pteropods in relation to environmental controls (sea ice, sea surface temperature, climate indices, phytoplankton biomass and productivity, and carbonate chemistry) and interspecies dynamics using general linear models. There was no overall directional trend in abundance of thecosomes, Limacina helicina antarctica and Clio pyramidata, throughout the entire WAP, although L. antarctica abundance increased in the slope region and C. pyramidata abundance increased in the South. High L. antarctica abundance was strongly tied to a negative Multivariate El Niño Southern Oscillation Index the previous year. C. pyramidata abundance was best explained by early sea ice retreat 1-yr prior. Abundance of the gymnosome species, Clione antarctica and Spongiobranchaea australis, increased over the time series, particularly in the slope region. Gymnosome abundance was positively influenced by abundance of their prey, L. antarctica, during the same season, and late sea ice advance 2-yr prior. These trends indicate a shorter ice season promotes longer periods of open water in spring/summer favoring all pteropod species. Weak relationships were found between pteropod abundance and carbonate chemistry, and no long-term trend in carbonate parameters was detected. These factors indicate ocean acidification is not presently influencing WAP pteropod abundance. Pteropods are responsive to the considerable environmental variability on both temporal and spatial scales-key for predicting future effects of climate change on regional carbon cycling and plankton trophic interactions.
We tested whether the thecosome pteropod Limacina helicina from Puget Sound, an urbanized estuary in the northwest continental US, experiences shell dissolution and altered mortality rates when exposed to the high CO2, low aragonite saturation state (Ωa) conditions that occur in Puget Sound and the northeast Pacific Ocean. Five, week-long experiments were conducted in which we incubated pteropods collected from Puget Sound in four carbon chemistry conditions: current summer surface (∼460–500 µatm CO2, Ωa≈1.59), current deep water or surface conditions during upwelling (∼760 and ∼1600–1700 µatm CO2, Ωa≈1.17 and 0.56), and future deep water or surface conditions during upwelling (∼2800–3400 µatm CO2, Ωa≈0.28). We measured shell condition using a scoring regime of five shell characteristics that capture different aspects of shell dissolution. We characterized carbon chemistry conditions in statistical analyses with Ωa, and conducted analyses considering Ωa both as a continuous dataset and as discrete treatments. Shell dissolution increased linearly as aragonite saturation state decreased. Discrete treatment comparisons indicate that shell dissolution was greater in undersaturated treatments compared to oversaturated treatments. Survival increased linearly with aragonite saturation state, though discrete treatment comparisons indicated that survival was similar in all but the lowest saturation state treatment. These results indicate that, under starvation conditions, pteropod survival may not be greatly affected by current and expected near-future aragonite saturation state in the NE Pacific, but shell dissolution may. Given that subsurface waters in Puget Sound’s main basin are undersaturated with respect to aragonite in the winter and can be undersaturated in the summer, the condition and persistence of the species in this estuary warrants further study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.