Human falls are a global public health issue resulting in over 37.3 million severe injuries and 646,000 deaths yearly. Falls result in direct financial cost to health systems and indirectly to society productivity. Unsurprisingly, human fall detection and prevention are a major focus of health research. In this article, we consider deep learning for fall detection in an IoT and fog computing environment. We propose a Convolutional Neural Network composed of three convolutional layers, two maxpool, and three fully-connected layers as our deep learning model. We evaluate its performance using three open data sets and against extant research. Our approach for resolving dimensionality and modelling simplicity issues is outlined. Accuracy, precision, sensitivity, specificity, and the Matthews Correlation Coefficient are used to evaluate performance. The best results are achieved when using data augmentation during the training process. The paper concludes with a discussion of challenges and future directions for research in this domain.
The fourth industrial revolution heralds a paradigm shift in how people, processes, things, data and networks communicate and connect with each other. Conventional computing infrastructures are struggling to satisfy dramatic growth in demand from a deluge of connected heterogeneous end points located at the edge of networks while, at the same time, meeting quality of service levels. The complexity of computing at the edge makes it increasingly difficult for infrastructure providers to plan for and provision resources to meet this demand. While simulation frameworks are used extensively in the modelling of cloud computing environments in order to test and validate technical solutions, they are at a nascent stage of development and adoption for fog and edge computing. This paper provides an overview of challenges posed by fog and edge computing in relation to simulation.
Cloud Computing has been used by different types of clients because it has many advantages, including the minimization of infrastructure resources costs, and its elasticity property, which allows services to be scaled up or down according to the current demand. From the Cloud provider point-of-view, there are many challenges to be overcome in order to deliver Cloud services that meet all requirements defined in Service Level Agreements (SLAs). High availability has been one of the biggest challenges for providers, and many services can be used to improve the availability of a service, such as checkpointing, load balancing, and redundancy. Beyond services, we can also find infrastructure and middleware solutions. This systematic review has as its main goal to present and discuss high available (HA) solutions for Cloud Computing, and to introduce some research challenges in this area. We hope this work can be used as a starting point to understanding and coping with HA problems in Cloud.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.