The fourth industrial revolution heralds a paradigm shift in how people, processes, things, data and networks communicate and connect with each other. Conventional computing infrastructures are struggling to satisfy dramatic growth in demand from a deluge of connected heterogeneous end points located at the edge of networks while, at the same time, meeting quality of service levels. The complexity of computing at the edge makes it increasingly difficult for infrastructure providers to plan for and provision resources to meet this demand. While simulation frameworks are used extensively in the modelling of cloud computing environments in order to test and validate technical solutions, they are at a nascent stage of development and adoption for fog and edge computing. This paper provides an overview of challenges posed by fog and edge computing in relation to simulation.
The REliable CApacity Provisioning and enhanced remediation for distributed cloud applications (RECAP) project aims to advance cloud and edge computing technology, to develop mechanisms for reliable capacity provisioning, and to make application placement, infrastructure management, and capacity provisioning autonomous, predictable and optimized. This paper presents the RECAP vision for an integrated edge-cloud architecture, discusses the scientific foundation of the project, and outlines plans for toolsets for continuous data collection, application performance modeling, application and component auto-scaling and remediation, and deployment optimization. The paper also presents four use cases from complementing fields that will be used to showcase the advancements of RECAP.
In recent years, there has been significant advancement in resource management mechanisms for cloud computing infrastructure performance in terms of cost, quality of service (QoS) and energy consumption. The emergence of the Internet of Things has led to the development of infrastructure that extends beyond centralised data centers from the cloud to the edge, the so-called cloud-to-thing continuum (C2T). This infrastructure is characterised by extreme heterogeneity, geographic distribution, and complexity, where the key performance indicators (KPIs) for the traditional model of cloud computing may no longer apply in the same way. Existing resource management mechanisms may not be suitable for such complex environments and therefore require thorough testing, validation and evaluation before even being considered for live system implementation. Similarly, previously discounted resource management proposals may be more relevant and worthy of revisiting. Simulation is a widely used technique in the development and evaluation of resource management mechanisms for cloud computing but is a relatively nascent research area for new C2T computing paradigms such as fog and edge computing. We present a methodical literature analysis of C2T resource management research using simulation software tools to assist researchers in identifying suitable methods, algorithms, and simulation approaches for future research. We analyse 35 research articles from a total collection of 317 journal articles published from January 2009 to March 2019. We present our descriptive and synthetic analysis from a variety of perspectives including resource management, C2T layer, and simulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.