Acinetobacter baumannii is an emergent bacterial pathogen that provokes many types of infections in hospitals around the world. The genome of this organism consists of a chromosome and plasmids. These plasmids vary over a wide size range and many of them have been linked to the acquisition of antibiotic-resistance genes. Our bioinformatic analyses indicate that A. baumannii plasmids belong to a small number of plasmid lineages. The general structure of these lineages seems to be very stable and consists not only of genes involved in plasmid maintenance functions but of gene sets encoding poorly characterized proteins, not obviously linked to survival in the hospital setting, and opening the possibility that they improve the parasitic properties of plasmids. An analysis of genes involved in replication, suggests that members of the same plasmid lineage are part of the same plasmid incompatibility group. The same analysis showed the necessity of classifying the Rep proteins in ten new groups, under the scheme proposed by Bertini et al. (2010). Also, we show that some plasmid lineages have the potential capacity to replicate in many bacterial genera including those embracing human pathogen species, while others seem to replicate only within the limits of the Acinetobacter genus. Moreover, some plasmid lineages are widely distributed along the A. baumannii phylogenetic tree. Despite this, a number of them lack genes involved in conjugation or mobilization functions. Interestingly, only 34.6% of the plasmids analyzed here possess antibiotic resistance genes and most of them belong to fourteen plasmid lineages of the twenty one described here. Gene flux between plasmid lineages appears primarily limited to transposable elements, which sometimes carry antibiotic resistance genes. In most plasmid lineages transposable elements and antibiotic resistance genes are secondary acquisitions. Finally, broad host-range plasmids appear to have played a crucial role.
SummaryTwo patients with diffuse cutaneous leishmaniasis caused by Leishmania mexicana were treated with two leishmanicidal drugs (pentamidine and allopurinol) combined with recombinant interferon-␥ restoring Th-1 favouring conditions in the patients. Parasites decreased dramatically in the lesions and macrophages diminished concomitantly, while IL-12-producing Langerhans cells and interferon-␥-producing NK and CD8 ϩ lymphocytes increased in a reciprocal manner. The CD4ϩ/CD8 ϩ ratio in the peripheral blood normalized. During exogenous administration of interferon-␥ the parasites' capacity to inhibit the oxidative burst of the patients' monocytes was abolished. Even though Th-1-favouring conditions were restored, both patients relapsed two months after therapy was discontinued. We conclude that the tendency to develop a diseasepromoting Th-2 response in DCL patients is unaffected by, and independent of, parasite numbers. Even though intensive treatment in DCL patients induced Th-1 disease restricting conditions, the diseasepromoting immunomodulation of few persistent Leishmania sufficed to revert the immune response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.