Reconstructed human skin models are a valuable tool for drug discovery, disease modeling, and basic research. In the past decades, major progress has been made in this field leading to the development of full-thickness skin models (FTSms) better representative of the native human skin by including the cellular cross talk between the dermal and epidermal layers. However, current available FTSms still present important limitations since they are only suitable for short-term studies, include nonhuman extracellular matrix (ECM) components and have a weak skin barrier function compared with in vivo human skin. In this study, a fibroblast-derived matrix was combined with the use of an inert polystyrene scaffold for the development of a fully human dermis capable of supporting a differentiated epidermis. To produce a pigmented FTSm, a coculture with keratinocytes, melanocytes, and fibroblasts was established. The structure and functionality of the developed FTSms were studied for short- and long-term cultivation using histological and immunofluorescence staining. The integrity of the skin barrier was evaluated using transepithelial electrical resistance (TEER) measurements. It was possible to obtain a mature dermis capable of supporting an epidermis without keratinocyte infiltration in only 6 days. ECM components (collagen IV and fibrin) were secreted by the fibroblasts and accumulated in the scaffold structure, recreating the microenvironment of the native human dermis. Moreover, the use of a scaffold resulted in a structure with mechanical stability due to its noncontracting nature. The coculture of primary human keratinocytes resulted in a terminally differentiated skin equivalent that could maintain its architecture and homeostasis up to 50 days. Melanocytes were correctly integrated within the epidermal basal layer and made it possible to reproduce constitutive pigmentation. TEER levels increased during culture time, reaching values of 1.1 ± 0.2 kΩ.cm 2 for the FTSm, indicative of a functional skin barrier. Impact statement The developed fully human full-thickness skin model has the potential to reduce the dependence on animal models for long-term studies of skin diseases and safety and efficacy assessment of novel drugs. Its longevity and robustness allow the experimental testing phase to be lengthened. The presence of active melanocytes at the dermal–epidermal junction makes this model the ideal platform to study skin pigmentation disorders.
Biological barriers are essential for the maintenance of organ homeostasis and their dysfunction is responsible for many prevalent diseases. Advanced in vitro models of biological barriers have been developed through the combination of 3D cell culture techniques and organ-on-chip (OoC) technology. However, real-time monitoring of tissue function inside the OoC devices has been challenging, with most approaches relying on off-chip analysis and imaging techniques. In this study, we designed and fabricated a low-cost barrier-on-chip (BoC) device with integrated electrodes for the development and real-time monitoring of biological barriers. The integrated electrodes were used to measure transepithelial electrical resistance (TEER) during tissue culture, thereby quantitatively evaluating tissue barrier function. A finite element analysis was performed to study the sensitivity of the integrated electrodes and to compare them with conventional systems. As proof-of-concept, a full-thickness human skin model (FTSm) was grown on the developed BoC, and TEER was measured on-chip during the culture. After 14 days of culture, the barrier tissue was challenged with a benchmark irritant and its impact was evaluated on-chip through TEER measurements. The developed BoC with an integrated sensing capability represents a promising tool for real-time assessment of barrier function in the context of drug testing and disease modelling.
Current commercially available in vitro skin models do not fully reproduce the structure and function of the native human skin, mainly due to their use of animal-derived collagen and their lack of a dynamic flow system. In this study, a full-thickness skin-on-a-chip (SoC) system that reproduces key aspects of the in vivo cellular microenvironment is presented. This approach combines the production of a fibroblast-derived matrix (FDM) with the use of an inert porous scaffold for the long-term, stable cultivation of a human skin model. The culture of a dermal compartment under fluid flow results in the increased synthesis and deposition of major FDM proteins, collagen I, and fibronectin, compared to tissues cultured under static conditions. The developed SoC includes a fully differentiated epidermal compartment with increased thickness and barrier function compared to the controls. Contrary to other SoC platforms that include a collagen-based matrix, the described model presents superior stability and physiological relevance. Finally, the skin barrier function was quantitatively evaluated via in situ transepithelial electrical resistance (TEER) measurements and in situ permeation tests. The SoC model presents a significantly higher TEER and lower permeability to FITC-dextran. In the future, this innovative low-cost platform could provide a new in vitro tissue system compatible with long-term studies to study skin diseases and evaluate the safety and efficacy of novel drugs and technologies.
Poly(hydroxyalkanoates) (PHAs) with differing material properties, namely, the homopolymer poly(3-hydroxybutyrate), P(3HB), the copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate), P(3HB-co-3HV), with a 3HV content of 25 wt.% and a medium chain length PHA, and mcl-PHA, mainly composed of 3-hydroxydecanoate, were studied as scaffolding material for cell culture. P(3HB) and P(3HB-co-3HV) were individually spun into fibers, as well as blends of the mcl-PHA with each of the scl-PHAs. An overall biopolymer concentration of 4 wt.% was used to prepare the electrospinning solutions, using chloroform as the solvent. A stable electrospinning process and good quality fibers were obtained for a solution flow rate of 0.5 mL h−1, a needle tip collector distance of 20 cm and a voltage of 12 kV for P(3HB) and P(3HB-co-3HV) solutions, while for the mcl-PHA the distance was increased to 25 cm and the voltage to 15 kV. The scaffolds’ hydrophilicity was significantly increased under exposure to oxygen plasma as a surface treatment. Complete wetting was obtained for the oxygen plasma treated scaffolds and the water uptake degree increased in all treated scaffolds. The biopolymers crystallinity was not affected by the electrospinning process, while their treatment with oxygen plasma decreased their crystalline fraction. Human dermal fibroblasts were able to adhere and proliferate within the electrospun PHA-based scaffolds. The P(3HB-co-3HV): mcl-PHA oxygen plasma treated scaffold highlighted the most promising results with a cell adhesion rate of 40 ± 8%, compared to 14 ± 4% for the commercial oxygen plasma treated polystyrene scaffold AlvetexTM. Scaffolds based on P(3HB-co-3HV): mcl-PHA blends produced by electrospinning and submitted to oxygen plasma exposure are therefore promising biomaterials for the development of scaffolds for tissue engineering.
The skin acts as a barrier to environmental insults and provides many vital functions. One of these is to shield DNA from harmful ultraviolet radiation, which is achieved by skin pigmentation arising as melanin is produced and dispersed within the epidermal layer. This is a crucial defence against DNA damage, photo‐ageing and skin cancer. The mechanisms and regulation of melanogenesis and melanin transfer involve extensive crosstalk between melanocytes and keratinocytes in the epidermis, as well as fibroblasts in the dermal layer. Although the predominant mechanism of melanin transfer continues to be debated and several plausible models have been proposed, we and others previously provided evidence for a coupled exo/phagocytosis model. Herein, we performed histology and immunohistochemistry analyses and demonstrated that a newly developed full‐thickness three‐dimensional reconstructed human pigmented skin model and an epidermis‐only model exhibit dispersed pigment throughout keratinocytes in the epidermis. Transmission electron microscopy revealed melanocores between melanocytes and keratinocytes, suggesting that melanin is transferred through coupled exocytosis/phagocytosis of the melanosome core, or melanocore, similar to our previous observations in human skin biopsies. We, therefore, present evidence that our in vitro models of pigmented human skin show epidermal pigmentation comparable to human skin. These findings have a high value for studies of skin pigmentation mechanisms and pigmentary disorders, whilst reducing the reliance on animal models and human skin biopsies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.