Metabotropic glutamate receptors (mGluRs) modulate somatosensory, autonomic, and motor functions at spinal levels. mGluR postsynaptic actions over spinal neurons display the pharmacologic characteristics of type I mGluRs; however, the spinal distribution of type I mGluR isoforms remains poorly defined. In this study, the authors describe a differential distribution of immunoreactivity to various type I mGluR isoforms (mGluR1a, mGluR5a,b, and mGluR1b) that suggests a correlation between specific isoforms and particular aspects of spinal cord function. Two different antisera raised against mGluR5a,b detected intense immunoreactivity within nociceptive afferent terminal fields (laminae I and II) and also in autonomic regions (parasympathetic and sympathetic). In contrast, two of three anti-mGluR1a antibodies did not immunostain lamina I or II. Laminae I and II immunostaining by a third anti-mGluR1a antibody was competed by a peptide sequence obtained from a homologous region in mGluR5, suggesting possible cross reactivity in fixed tissue. Autonomic neurons did not express mGluR1a immunoreactivity. All anti-mGluR1a antibodies strongly and specifically immunolabeled dendritic and somatic membranes of neurons in the deep dorsal horn (lamina III-V) and the ventral horn (lamina VI-IX). Somatic motoneurons expressed mGluR1a immunoreactivity but little or no mGluR5 immunoreactivity. Phrenic and pudendal motoneurons expressed the highest level of mGluR1a immunoreactivity in the spinal cord. Intense mGluR1b immunoreactivity was restricted to a few scattered neurons and a prominent group of neurons in lamina X. Lamina II neurons expressed low levels of mGluR1b immunoreactivity. Ultrastructurally, type I mGluR immunoreactivity was found mostly at extrasynaptic sites on the plasma membrane, but it was also found perisynaptically, in the body of the postsynaptic regions or in relation to intracytoplasmic structures.
If ground‐water levels of a confined aquifer fluctuate with sea tides, individual values of hydraulic conductivity and specific storage can then be determined. Apparent tidal efficiency and time lag are first calculated from the water level data recorded at an observational device situated inland from the sea, taking into account the response characteristics of the observational device according to criteria established by Hvorslev [1951]. The true tidal efficiency of the aquifer at the seacoast is then determined from the apparent tidal efficiency and used to obtain the specific storage. This and the tidal time lag are utilized to calculate the hydraulic conductivity. The method was tested in Prince Edward Island, Canada, and yielded results compatible with pump test data. This is a simple and inexpensive way to test a confined aquifer in the coastal environment.
The objective of the present study was to determine the location of the cholinergic neurons activated in the spinal cord of decerebrate cats during fictive locomotion. Locomotion was induced by stimulation of the mesencephalic locomotor region (MLR). After bouts of locomotion during a 7-9 h period, the animals were perfused and the L(3)-S(1) spinal cord segments removed. Cats in the control group were subjected to the same surgical procedures but no locomotor task. The tissues were sectioned and then stained by immunohistochemical methods for detection of the c-fos protein and choline acetyltransferase (ChAT) enzyme. The resultant c-fos labeling in the lumbar spinal cord was similar to that induced by fictive locomotion in the cat. ChAT-positive cells also clearly exhibited fictive locomotion induced c-fos labeling. Double labeling with c-fos and ChAT was observed in cells within ventral lamina VII, VIII, and possibly IX. Most of them were concentrated in the medial portion of lamina VII close to lamina X, similar in location to the partition and central canal cells found by Barber and collaborators. The number of ChAT and c-fos-labeled neurons was increased following fictive locomotion and was greatest in the intermediate gray, compared with dorsal and ventral regions. The results are consistent with the suggestion that cholinergic interneurons in the lumbar spinal cord are involved in the production of fictive locomotion. Cells in the regions positive for double-labeled cells were targeted for electrophysiological study during locomotion, intracellular filling, and subsequent processing for ChAT immunohistochemistry. Three cells identified in this way were vigorously active during locomotion in phase with ipsilateral extension, and they projected to the contralateral side of the spinal cord. Thus a new population of spinal cord cells can be defined: cholinergic partition cells with commissural projections that are active during the extension phase of locomotion.
Double immunofluorescence was utilized to determine whether Renshaw cells contain calbindin D28k immunoreactivity. Renshaw cells were identified by their characteristic expression patterns of gephyrin immunoreactivity in sections of rat and cat lumbar spinal cord. In the rat, all neurons classified as Renshaw cells (n = 487) also contained calbindin D28k-immunoreactivity, and all calbindin D28k-immunoreactive cells located in the ventral-most region of lamina VII expressed the characteristic gephyrin labeling and morphology of Renshaw cells. In the cat, fewer than half of the Renshaw cells (47%; n = 128) were double-labeled. In both species, occasional calbindin D28k-immunoreactive Renshaw cells were identified within motor nuclei in lamina IX. The distinctive immunolabeling of Renshaw cells allowed us to estimate that there are about 250 Renshaw cells in each ventral horn of the fourth lumbar segment of rat spinal cord, and about 750 cells per ventral horn in the L6 segment of the cat. We conclude that the functional properties of Renshaw cells, including their ability to fire action potentials at high rates, likely require specific homeostatic mechanisms including strong intracellular calcium buffering, the precise mechanisms of which may vary between species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.