Protein complexes are key molecular entities that integrate multiple gene products to perform cellular functions. Here we report the first genome-wide screen for complexes in an organism, budding yeast, using affinity purification and mass spectrometry. Through systematic tagging of open reading frames (ORFs), the majority of complexes were purified several times, suggesting screen saturation. The richness of the data set enabled a de novo characterization of the composition and organization of the cellular machinery. The ensemble of cellular proteins partitions into 491 complexes, of which 257 are novel, that differentially combine with additional attachment proteins or protein modules to enable a diversification of potential functions. Support for this modular organization of the proteome comes from integration with available data on expression, localization, function, evolutionary conservation, protein structure and binary interactions. This study provides the largest collection of physically determined eukaryotic cellular machines so far and a platform for biological data integration and modelling.
SUMMARY Just as reference genome sequences revolutionized human genetics, reference maps of interactome networks will be critical to fully understand genotype-phenotype relationships. Here, we describe a systematic map of ~14,000 high-quality human binary protein-protein interactions. At equal quality, this map is ~30% larger than what is available from small-scale studies published in the literature in the last few decades. While currently available information is highly biased and only covers a relatively small portion of the proteome, our systematic map appears strikingly more homogeneous, revealing a “broader” human interactome network than currently appreciated. The map also uncovers significant inter-connectivity between known and candidate cancer gene products, providing unbiased evidence for an expanded functional cancer landscape, while demonstrating how high quality interactome models will help “connect the dots” of the genomic revolution.
Global insights into cellular organization and genome function require comprehensive understanding of the interactome networks that mediate genotype-phenotype relationships 1,2 . Here, we present a human "all-by-all" reference interactome map of human binary protein interactions, or "HuRI". With ~53,000 high-quality protein-protein interactions (PPIs), HuRI has approximately four times more such interactions than high-quality curated interactions from smallscale studies. Integrating HuRI with genome 3 , transcriptome 4 , and proteome 5 data enables the study of cellular function within most physiological or pathological cellular contexts. We demonstrate the utility of HuRI in identifying specific subcellular roles of PPIs. Inferred tissuespecific networks reveal general principles for the formation of cellular context-specific functions and elucidate potential molecular mechanisms underlying tissue-specific phenotypes of Mendelian Reprints and permissions information is available at http://www.nature.com/reprints.Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.