Follicular size, follicular atresia, and oocyte morphology were investigated for the possible relation of these characteristics to the developmental competence of bovine oocytes. Ovaries from a local slaughterhouse were dissected to obtain a heterogeneous population of follicles. Half of each follicle was fixed for histological analysis, and the oocytes were detached carefully and cultured individually. Before in vitro maturation, the oocytes were grouped into six different classes based on the morphology of the cumulus and the ooplasm: classes 1 and 2 represent oocytes with a homogeneous ooplasm plus a compact and complete cumulus, and classes 3-6 represent oocytes with a granulated ooplasm and an incomplete and/or expanded cumulus. Oocytes from class 3 (beginning of expansion in outer cumulus layers and slight granulations in the ooplasm) developed past the 16-cell stage significantly (P < 0.05) more than oocytes with a compact and complete cumulus (classes 1 and 2) and oocytes from classes 4-6 (incomplete and/or expanded cumulus) after 5 days of in vitro culture. Oocytes from follicles measuring 3 mm or less did not develop past the 16-cell stage, whereas follicles of 3-5 mm and 5 mm or larger developed at similar rates (17% and 21% morulae, respectively). The state of the follicle did not affect whether an embryo reached at least the 16-cell stage, as comparable rates were obtained in all three groups of follicles: nonatretic (20%), intermediate (14%), and slightly atretic (16%).(ABSTRACT TRUNCATED AT 250 WORDS)
Superstimulation in donor cows increases the number of cumulus-oocyte complexes (COC), but when compared to in vivo maturation, in vitro maturation results in only half as many blastocysts after prolonged in vitro culture. The objective of this study was to establish a superstimulation protocol that would produce a maximal number of competent COC for standard in vitro embryo production. During experiment 1, eight cyclic Holstein heifers were superstimulated with four doses of FSH. Half the heifers received an injection of LH 6 h before ovum pick-up (OPU). The COC were collected following OPU either 33 or 48 h following the last FSH injection (coasting period). During experiment 2, six cyclic Holstein heifers were superstimulated with six doses of FSH, and in half the heifers, LH was administered 6 h before OPU. The COC were collected following ultrasound-guided transvaginal aspiration of both ovaries 48 h after the last FSH injection (coasting period). The COC originating from follicles with a diameter of 5 mm or more (n = 180 for experiment 1 and 57 for experiment 2) were subjected to standard in vitro maturation, fertilization, and development. When animals were administered four doses of FSH, 48 h of coasting resulted in significantly more 5- to 10-mm follicles (P < 0.01) than 33 h of coasting. If a 33-h coasting period was used, administration of LH 6 h before OPU resulted in a significant increase in both percentage of blastocysts and embryo production rate at Days 7 and 8 (P < or = 0.05) of in vitro culture. If a 48-h coasting period was used, LH injection did not affect the rates of blastocyst production. When donors were administered six doses of FSH with a 48-h coasting period, the highest results, although not significant (P < 0.08), were obtained when animals received LH 6 h before OPU, with 80% +/- 9% (mean +/- SEM) blastocysts and 0.8 +/- 0.09 embryo produced per COC retrieved per heifer at Day 8 of culture. Never has in vitro technology been so close to producing 100% developmentally competent COC.
Combinations of genetic, environmental, and management factors are suspected to explain the loss in fertility observed for over 20 years in dairy cows. In some cases, IVF is used. When compared with in vivo embryo production, IVF resulted in low success rates until the FSH coasting process (FSH starvation after superstimulation) was introduced in 2002. Increased competence associated with FSH withdrawal of aspirated oocyte for in vitro maturation and IVF has not been optimized nor explained yet. The goal here was to determine and characterize the optimal oocyte competence acquisition window during the coasting period by determining blastocyst rates and follicular cohort development. Commercial milking cycling cows (nZ6) were stimulated with 3 days of FSH (6!40 mg NIH Folltropin-V given at 12 h intervals) followed by a coasting period of 20, 44, 68, or 92 h. Each animal was exposed to the four conditions and served as its own control. At the scheduled time, transvaginal aspirations of immature oocytes were performed followed by IVF of half the oocytes. The outcomes were as follows: i) FSH coasting was optimal at a defined period: between 44 and 68 h of coasting; ii) The best estimated coasting duration was w54G7 h; iii) Under these conditions, the best statistical blastocyst rate estimation was w70%; iv) Between 44 and 68 h of coasting, follicle size group proportions were similar; v) Follicle diameter was not linearly associated with competence. In conclusion, coasting duration is critical to harvest the oocytes at the right moment of follicular differentiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.