Compositional engineering with a focus on structural phase transitions has been considered as the most important approach for enhancement of the functional properties of ferroelectric materials due to the critical fluctuation of physical properties. Of special interest are electric‐field‐induced phase transitions, which can terminate in a liquid–vapor‐type critical point with a strong enhancement of functional properties. Whereas the critical point in liquid–vapor space considers changes in temperature and pressure, the critical point in this study is placed in electric field–temperature diagrams. In single crystals, temperature and electric field of a critical point are sharply defined and therefore not appealing for practical applications. However, in ceramics, it is demonstrated that the orientational dependence of the critical point leads to a broadened temperature and electric field range. The presence of a diffuse critical point in ceramics provides a conceptually novel approach for the enhancement of functional properties, such as piezoelectric and electrocaloric (EC) responses, as validated here on the example of the 0.75Bi1/2Na1/2TiO3‐0.25SrTiO3 lead‐free relaxor ferroelectric ceramics. The realization of a broad criticality range will further facilitate the development of the piezoelectric and EC materials and provide an alternative concept to manipulate the functional properties by application of an electric field.
Piezoceramics are widely‐used in high‐power applications, whereby the material is driven in the vicinity of the resonance frequency with high electric fields. Evaluating material's performance at these conditions requires the consideration of inherent nonlinearity, anisotropy, and differences between individual vibration modes. In this work, the relation between electromechanical properties at large vibration velocity and the utilized vibration mode is investigated for a prototype hard piezoceramic. The nonlinear behavior is determined using a combined three‐stage pulse drive method, which enables the analysis of resonant and antiresonant conditions and the calculation of electromechanical parameters. The deviations of coupling coefficients, compliances, and piezoelectric coefficients at high‐power drive were found to be strongest for the transverse length vibration mode. Differences in the mechanical quality factors were observed only between the planar and transverse length modes, which were rationalized by the different strain distribution profiles and the contribution of different loss tensor components. In addition, the influence of the measurement configuration was investigated and a correction method is proposed. The differences between vibration modes are further confirmed by heat generation measurements under continuous drive, which revealed that the strongest heat generation appears in the radial mode, while transverse and longitudinal length modes show similar temperature increase. Piezoceramics are widely‐used in high‐power applications, whereby the material is driven in the vicinity of the resonance frequency with high electric fields. Evaluating material's performance at these conditions requires the consideration of inherent nonlinearity, anisotropy, and differences between individual vibration modes. In this work, the relation between electromechanical properties at large vibration velocity and the utilized vibration mode is investigated for a prototype hard piezoceramic. The nonlinear behavior is determined using a combined three‐stage pulse drive method, which enables the analysis of resonant and antiresonant conditions and the calculation of electromechanical parameters. The deviations of coupling coefficients, compliances, and piezoelectric coefficients at high‐power drive were found to be strongest for the transverse length vibration mode. Differences in the mechanical quality factors were observed only between the planar and transverse length modes, which were rationalized by the different strain distribution profiles and the contribution of different loss tensor components. In addition, the influence of the measurement configuration was investigated and a correction method is proposed. The differences between vibration modes are further confirmed by heat generation measurements under continuous drive, which revealed that the strongest heat generation appears in the radial mode, while transverse and longitudinal length modes show similar temperature increase.
Quenching has been demonstrated to increase the thermal stability of the piezoelectric properties of relaxor (1−x)Na1/2Bi1/2TiO3-xBaTiO3 (NBTxBT) by 40 °C. This work establishes a correlation between the quenching temperature and salient electrical (conductivity, piezoelectric and dielectric) properties of two NBTxBT variants. The impact of quenching on the mechanical properties is quantified in terms of changes in Young's modulus. The perspective for application is interrogated using a variation in the sample thickness and separating the sample interior from the sample surface. An in situ measurement of surface temperature during the quenching treatment is applied to validate the simulation for thickness-dependent thermal transport in the material and ensuing transient thermal stresses. The calculated stress intensity factor is then compared with the fracture toughness of the material. This study asserts that air quenching can be conducted without mechanical degradation. Thus, it can be an important alternative to existing industrial strategies to enhance the thermal stability of the piezoelectric properties of relaxor NBTxBT.
For millennia, ceramics have been densified via sintering in a furnace, a time-consuming and energy-intensive process. The need to minimize environmental impact calls for new physical concepts beyond large kilns...
Dislocations are usually expected to degrade electrical, thermal and optical functionality and to tune mechanical properties of materials. Here, we demonstrate a general framework for the control of dislocation–domain wall interactions in ferroics, employing an imprinted dislocation network. Anisotropic dielectric and electromechanical properties are engineered in barium titanate crystals via well-controlled line-plane relationships, culminating in extraordinary and stable large-signal dielectric permittivity (≈23100) and piezoelectric coefficient (≈2470 pm V–1). In contrast, a related increase in properties utilizing point-plane relation prompts a dramatic cyclic degradation. Observed dielectric and piezoelectric properties are rationalized using transmission electron microscopy and time- and cycle-dependent nuclear magnetic resonance paired with X-ray diffraction. Succinct mechanistic understanding is provided by phase-field simulations and driving force calculations of the described dislocation–domain wall interactions. Our 1D-2D defect approach offers a fertile ground for tailoring functionality in a wide range of functional material systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.