Polycystic ovarian syndrome (PCOS) is one of the common causes or female infertility. Phyllanthus muellerianus (Euphorbiaceae) is a plant used to treat various ailments including frequent menstruation and anovulation. We investigated the effects of P. muellerianus extracts on estrus cyclicity, lipid profile, oxidative stress-related markers, sex hormones, and ovarian architecture in letrozole-induced PCOS in rats. After induction of PCOS using letrozole (1 mg/kg/day), normal (n=6), and PCOS (n=108; distributed into 18 groups of 6 animals/group) rats were treated orally for 7 or 14 days with distilled water (10 ml/kg/day), clomiphene citrate (2 mg/kg/day), metformin (500 mg/kg/day), and aqueous or methanolic extract of P. muellerianus (30, 60, and 120 mg/kg). Estrus cyclicity, body, and sexual organ (ovaries and uterus) weights, biochemical and histological parameters were measured. There were letrozole-induced PCOS characterized by irregular estrus cyclicity, elevated (p<0.05-0.01) glycaemia, ovarian weight, triglycerides, total cholesterol, LDL cholesterol, VLDL cholesterol, malondialdehyde, luteinizing hormone (LH), and testosterone concentrations, but there were low (p<0.05-0.001) HDL cholesterol, estradiol, progesterone, catalase, peroxidase, and superoxide dismutase levels, compared with control. PCOS rats had multiple cysts compared with control. These reproductive, biochemical, and structural alterations were alleviated by P. muellerianus extracts. For instance, P. muellerianus restored the estrus cyclicity with a remarkable effect after 14 days of treatment. Moreover, P. muellerianus significantly decreased (p<0.001) LH and testosterone (both extracts; 30, 60, and 120 mg/kg) levels, but increased (p<0.01) estradiol (aqueous extract; 60 mg/kg) concentration. Cystic follicles were also decreased after plant application. P. muellerianus alleviated reproductive, hormonal, and structural alterations in PCOS rats. This plant could be useful in the management/treatment of reproductive and metabolic disorders related to PCOS.
Allyl isothiocyanate (AITC), a dietary phytochemical found in some cruciferous vegetables, is commonly used as an antimicrobial, anticancer, and antioxidant agent.In the present study, we investigated the effects of AITC on insulin resistance and transcription factors in a diabetic rat model. A total of 42 Wistar rats were divided into six groups and orally treated for 12 weeks as follows: (i) control; (ii) AITC (100 mg/kg body weight [BW]); (iii) high fat diet (HFD); (iv) HFD + AITC (100 mg/kg BW); (v) HFD + streptozotocin (STZ, 40 mg/kg BW); and (vi) HFD + STZ + AITC.Administration of AITC reduced blood glucose, total cholesterol, triglycerides, and creatinine levels, but increased (P < 0.001) total antioxidant capacity. In AITC-treated rats, the glucose transporter-2, peroxisome proliferator-activated receptor gamma, p-insulin receptor substrate-1, and nuclear factor erythroid-derived 2 in the liver and kidney were increased while nuclear factor-kappa B was downregulated (P < 0.05). In conclusion, AITC possesses antidiabetic, antioxidant, and anti-inflammatory activities in HFD/STZ-induced T2DM in rats. These findings may further justify the importance of AITC in phytomedicine. K E Y W O R D Sallyl isothiocyanate, diabetes, insulin resistance, oxidative stress, streptozotocin
BackgroundChromium histidinate (CrHis) and biotin are micronutrients commonly used to improve health by athletes and control glycaemia by patients with diabetes. This study investigates the effects of 8-week regular exercise training in rats together with dietary CrHis and biotin supplementation on glucose, lipids and transaminases levels, as well as protein expression levels of peroxisome proliferator-activated receptor gamma (PPAR-γ), insulin receptor substrate-1 (IRS-1) and nuclear transcription factor kappa B (NF-κB).MethodsA total of 56 male Wistar rats were randomly divided into 8 groups of 7 animals each and treated as follows: Control, CrHis, Biotin, CrHis+Biotin, Exercise, CrHis+Exercise, Biotin+Exercise, and CrHis+Biotin+Exercise. The doses of CrHis and biotin were 400 μg/kg and 6 mg/kg of diet, respectively. The training program consisted of running at 30 m/min for 30 min/day at 0% grade level, 5 days per week, once a day for 6 weeks. Serum glucose, total cholesterol (TC), high-density lipoprotein cholesterol (HDL), triglycerides (TG), aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels were measured with an automatic biochemical analyzer. Muscle and liver PPAR-γ, IRS-1 and NF-κB expressions were detected with real-time polymerase chain reaction.ResultsRegular exercise significantly (p < 0.001) decreased glucose, TC and TG levels, but increased HDL cholesterol. Dietary CrHis and biotin supplementation exhibited a significant (p < 0.001) decrease in glucose (effect size = large; ƞ2 = 0.773) and TG (effect size = large; ƞ2 = 0.802) levels, and increase in HDL cholesterol compared with the exercise group. No significant change in AST and ALT (effect size = none) levels was recorded in all groups (p > 0.05). CrHis/biotin improves the proteins expression levels of IRS-1, PPAR-γ, and NF-κB (effect size: large for all) in the liver and muscle of sedentary and regular exercise-trained rats (p < 0.001).ConclusionsCrHis/biotin supplementation improved serum glucose and lipid levels as well as proteins expression levels of PPAR-γ, IRS-1 and NF-κB in the liver and muscle of exercise-trained rats, with the highest efficiency when administered together. CrHis/biotin may represent an effective nutritional therapy to improve health.
In the present study, we investigated the effects of chromium-picolinate (CrPic) and chromium-histidinate (CrHis) on nutrient digestibility and nutrient transporters in laying hens exposed to heat stress (HS). Hens (n = 1800; 16 weeks old) were kept in cages in temperature-controlled rooms at either 22 ± 2 °C for 24 h/day (thermoneutral (TN)) or 34 ± 2 °C for 8 h/day, from 08:00 to 17:00, followed by 22 °C for 16 h (HS) for 12 weeks. Hens reared under both environmental conditions were fed one of three diets: a basal diet and the basal diet supplemented with either 1.600 mg of CrPic (12.43% Cr) or 0.788 mg of CrHis (25.22% Cr) per kg of diet, delivering 200 μg elemental Cr per kg of diet. HS impaired the nutrient digestibility and nutrient transports in laying hens (P < 0.001). However, both Cr sources increased digestibility of dry matter (DM; P < 0.001), organic matter (OM; P < 0.05), crude protein (CP; P < 0.001), and crude fat (CF; P < 0.001). Both Cr sources partially alleviated detrimental effects of HS on fatty acid-binding and transport protein1 (FABP1, FATP1), glucose (SGLT1, GLUT1, GLUT10), protein (PepT1, PepT2), and amino acid transporters (ASCT1, bAT1, CAT1, EAAT1, LAT1) of the ileum (P < 0.0001). The efficacy of Cr as CrHis was more notable than Cr as CrPic, which could be attributed to higher bioavailability. Finally, the detrimental effects of HS on nutrient digestibility and nutrient transporters were alleviated by CrPic and CrHis. These findings may justify the use of CrPic and CrHis in poultry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.