Metasurfaces composed of planar arrays of subwavelength artificial structures show promise for extraordinary light manipulation. They have yielded novel ultrathin optical components such as flat lenses, wave plates, holographic surfaces, and orbital angular momentum manipulation and detection over a broad range of the electromagnetic spectrum. However, the optical properties of metasurfaces developed to date do not allow for versatile tunability of reflected or transmitted wave amplitude and phase after their fabrication, thus limiting their use in a wide range of applications. Here, we experimentally demonstrate a gate-tunable metasurface that enables dynamic electrical control of the phase and amplitude of the plane wave reflected from the metasurface. Tunability arises from field-effect modulation of the complex refractive index of conducting oxide layers incorporated into metasurface antenna elements which are configured in reflectarray geometry. We measure a phase shift of 180° and ∼30% change in the reflectance by applying 2.5 V gate bias. Additionally, we demonstrate modulation at frequencies exceeding 10 MHz and electrical switching of ±1 order diffracted beams by electrical control over subgroups of metasurface elements, a basic requirement for electrically tunable beam-steering phased array metasurfaces. In principle, electrically gated phase and amplitude control allows for electrical addressability of individual metasurface elements and opens the path to applications in ultrathin optical components for imaging and sensing technologies, such as reconfigurable beam steering devices, dynamic holograms, tunable ultrathin lenses, nanoprojectors, and nanoscale spatial light modulators.
Basic design rules are developed for the use of metallic nanostructures to realize broadband absorption enhancements in thin-film solar cells. They are applied to a relevant and physically intuitive model system consisting of a two-dimensional, periodic array of Ag strips on a silica-coated Si film supported by a silica substrate. We illustrate how one can simultaneously take advantage of 1) the high near-fields surrounding the nanostructures close to their surface plasmon resonance frequency and 2) the effective coupling to waveguide modes supported by the thin Si film through an optimization of the array properties. Following this approach, we can attain a 43% enhancement in the short circuit current as compared to a cell without metallic structures. It is suggested that 3-dimensional nanoparticle arrays with even larger boosts in short circuit current can also be generated using the presented framework.Photovoltaic (PV) cells can provide virtually unlimited amounts of energy by effectively converting sunlight into clean electrical power. Silicon has been the material of choice for PV cells due to low cost, earth abundance, non-toxicity, and the availability of a very mature processing technology. The cost of current PV modules still needs to be significantly reduced and efficiency substantially increased to enable large scale implementation. Thin-film, second-generation Si solar cells may provide a viable pathway towards this goal because of their low materials and processing costs. [1] Unfortunately the materials quality and resulting energy conversion efficiencies of such cells are still substantially lower than crystalline, wafer-based cells. This is a direct result of the large mismatch between electronic and photonic length scales in these devices; the absorption depth of light in Si is significantly longer than the electronic (minority carrier) diffusion length in deposited thin-film materials for photon energies close to the band-gap. As a result, charge extraction from optically thick cells is challenging due to carrier recombination in the bulk of the semiconductor.If light absorption could be improved in ultra-thin layers of active material it would lead directly to lower recombination currents, higher open circuit voltages, and higher conversion efficiencies. Conventional, planar anti-reflection (AR) coatings do not provide high transmission efficiencies over the entire solar spectrum and do not enable effective light trapping to increase absorption. Light trapping schemes using diffusely scattering surface textures were first suggested in the 1980s and are by now fairly-well understood. [2,3] Texturing surfaces of thin film cells is not ideal as it leads to enhanced surface recombination. For this reason, some interesting alternative trapping configurations have been proposed that utilize structuring at length-scales orders of magnitude larger than the cell thickness. [4] More than a decade ago, it was first proposed to use the unique optical properties of metallic (i.e., plasmonic) structures to b...
Active metasurfaces composed of electrically reconfigurable nanoscale subwavelength antenna arrays can enable real-time control of scattered light amplitude and phase. Achievement of widely tunable phase and amplitude in chip-based active metasurfaces operating at or near 1550 nm wavelength has considerable potential for active beam steering, dynamic hologram rendition, and realization of flat optics with reconfigurable focal lengths. Previously, electrically tunable conducting oxide-based reflectarray metasurfaces have demonstrated dynamic phase control of reflected light with a maximum phase shift of 184° ( Nano Lett. 2016 , 16 , 5319 ). Here, we introduce a dual-gated reflectarray metasurface architecture that enables much wider (>300°) phase tunability. We explore light-matter interactions with dual-gated metasurface elements that incorporate two independent voltage-controlled MOS field effect channels connected in series to form a single metasurface element that enables wider phase tunability. Using indium tin oxide (ITO) as the active metasurface material and a composite hafnia/alumina gate dielectric, we demonstrate a prototype dual-gated metasurface with a continuous phase shift from 0 to 303° and a relative reflectance modulation of 89% under applied voltage bias of 6.5 V.
We experimentally demonstrate an ultracompact PlasMOStor, a plasmon slot waveguide field-effect modulator based on a transparent conducting oxide active region. By electrically modulating the conducting oxide material deposited into the gaps of highly confined plasmonic slot waveguides, we demonstrate field-effect dynamics giving rise to modulation with high dynamic range (2.71 dB/μm) and low waveguide loss (∼0.45 dB/μm). The large modulation strength is due to the large change in complex dielectric function when the signal wavelength approaches the surface plasmon resonance in the voltage-tuned conducting oxide accumulation layer. The results provide insight about the design of ultracompact, nanoscale modulators for future integrated nanophotonic circuits.
Harnessing photoexcited “hot” carriers in metallic nanostructures could define a new phase of non-equilibrium optoelectronics for photodetection and photocatalysis. Surface plasmons are considered pivotal for enabling efficient operation of hot carrier devices. Clarifying the fundamental role of plasmon excitation is therefore critical for exploiting their full potential. Here, we measure the internal quantum efficiency in photoexcited gold (Au)–gallium nitride (GaN) Schottky diodes to elucidate and quantify the distinct roles of surface plasmon excitation, hot carrier transport, and carrier injection in device performance. We show that plasmon excitation does not influence the electronic processes occurring within the hot carrier device. Instead, the metal band structure and carrier transport processes dictate the observed hot carrier photocurrent distribution. The excellent agreement with parameter-free calculations indicates that photoexcited electrons generated in ultra-thin Au nanostructures impinge ballistically on the Au–GaN interface, suggesting the possibility for hot carrier collection without substantial energy losses via thermalization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.