The study considers the application of text mining techniques to the analysis of curricula for study programs offered by institutions of higher education. It presents a novel procedure for efficient and scalable quantitative content analysis of module handbooks using topic modeling. The proposed approach allows for collecting, analyzing, evaluating, and comparing curricula from arbitrary academic disciplines as a partially automated, scalable alternative to qualitative content analysis, which is traditionally conducted manually. The procedure is illustrated by the example of IS study programs in Germany, based on a data set of more than 90 programs and 3700 distinct modules. The contributions made by the study address the needs of several different stakeholders and provide insights into the differences and similarities among the study programs examined. For example, the results may aid academic management in updating the IS curricula and can be incorporated into the curricular design process. With regard to employers, the results provide insights into the fulfillment of their employee skill expectations by various universities and degrees. Prospective students can incorporate the results into their decision concerning where and what to study, while university sponsors can utilize the results in their grant processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.