Light's orbital angular momentum (OAM) is a conserved quantity in cylindrically symmetric media; however, it is easily destroyed by free-space turbulence or fiber bends, because anisotropic perturbations impart angular momentum. We observe the conservation of OAM even in the presence of strong bend perturbations, with fibers featuring air cores that appropriately sculpt the modal density of states. In analogy to the classical reasoning for the enhanced stability of spinning tops with increasing angular velocity, these states' lifetimes increase with OAM magnitude. Consequently, contrary to conventional wisdom that ground states of systems are the most stable, OAM longevity in air-core fiber increases with mode-order. Aided by conservation of this fundamental quantity, we demonstrate fiber propagation of 12 distinct higher-order OAM modes, of which 8 remain low-loss and >98% pure from near-degenerate coupling after kmlength propagation. The first realization of long-lived higher-order OAM states, thus far posited to exist primarily in vacuum, is a necessary condition for achieving the promise of higherdimensional OAM-based classical and quantum communications over practical distances.Quantum numbers are usually assigned to conserved quantities; hence it appears natural that paraxial light travelling in isotropic, cylindrically symmetric media such as free space or optical fibers be characterized by its angular momentum [1]: J = L + S (1) L represents light's orbital angular momentum (OAM) [2], and S represents its spin angular momentum, SAM, commonly known as left or right handed circular polarization, ̂±, such that S = ±1 in units of ħ for left and right handed circular polarization, respectively. L forms a countably infinite dimensional basis, spawning widespread interest in OAM beams [3,4,5]. In particular, this enables a large alphabet of states for hyper-entangled quantum communications or high-capacity classical links. The information capacity of a classical or quantum communications link increases with the number of distinct, excitable and readable orthogonal information channels. Degrees of freedom that conserve their eigenvalues are required, because perturbations which cause eigenstate rotation, conventionally called mode coupling, are debilitating. In classical communications, computational algorithms can partially recover information for some limited perturbations, albeit with energy-intensive signal processing [6]. For low-light level applications such as quantum communications or interplanetary links, the information is lost. With the use of wavelength and polarization as photonic degrees of freedom
Spin to orbital angular momentum (OAM) conversion using a device known as a q-plate has gained recent attention as a convenient means of creating OAM beams. We show that the dispersive properties of a q 1∕2 plate, specifically its group index difference Δng for ordinary and extraordinary polarization light, can be tuned for achieving single-aperture, alignment-tolerant stimulated emission depletion (STED) nanoscopy with versatile control over the color combinations as well as laser bandwidths. Point spread function measurements reveal the ability to achieve single-aperture STED illumination systems with high throughput (transmission >89%) and purity (donut beam extinction ratios as high as 18.75 dB, i.e., 1% residual light in the dark center of the donut beam) for a variety of color combinations covering the entire visible spectrum, hence addressing several of the fluorescent dyes of interest in STED microscopy. In addition, we demonstrate dual-color STED illumination that would enable multiplexed imaging modalities as well as schemes that could use wide bandwidths up to 19 nm (and hence ultrashort pulses down to ∼50 fs). Switching between any of these color settings only involves changing the bias of the q-plate that does not alter the alignment of the system, hence potentially facilitating alignment-free, spectrally diverse multiplexed nanoscale imaging
The promise of the infinite-dimensionality of orbital angular momentum (OAM) and its application to free-space and fiber communications has attracted immense attention in recent years. In order to facilitate OAM-guidance, novel fibers have been proposed and developed, including a class of so-called ring-fibers. In these fibers, the wave-guiding region is a high-index annulus instead of a conventional circular core, which for reasons related to polarization-dependent differential phase shifts for light at waveguide boundaries, leads to enhanced stability for OAM modes. We review the theory and implementation of this nascent class of waveguides, and discuss the opportunities and limitations they present for OAM scalability.
Simultaneous MIMO-free transmission of 12 orbital angular momentum (OAM) modes over a 1.2 km air-core fiber is demonstrated. WDM compatibility of the system is shown by using 60, 25 GHz spaced WDM channels with 10 GBaud QPSK signals. System performance is evaluated by measuring bit error rates, which are found to be below the soft FEC limit, and limited by inter-modal crosstalk. The crosstalk in the system is analyzed, and it is concluded that it can be significantly reduced with an improved multiplexer and de-multiplexer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.