We present a fiber-based method for generating vortex beams with a tunable value of orbital angular momentum from -1ℏ to +1ℏ per photon. We propose a new (to our knowledge) method to determine the modal content of the fiber and demonstrate high purity of the desired vortex state (97% after 20 m, even after bends and twists). This method has immediate utility for the multitude of applications in science and technology that exploit vortex light states.
This paper describes an advanced multimode-fiber-link model that was used to aid the development of Telecommunication Industry Association standard specifications for a next-generation 50m-core laser-optimized multimode fiber. The multimode-link model takes into account the interactions of the laser, the transmitter optical subassembly, and the fiber, as well as effects of connections and the receiver preamplifier. We present models for each of these components. Based on these models, we also develop an efficient and simple formalism for the calculation of the fiber transfer function and the signal at the link output in any link configuration. We demonstrate how the model may be used to develop specifications on transmitters and fibers that guarantee any desired level of performance.
The promise of the infinite-dimensionality of orbital angular momentum (OAM) and its application to free-space and fiber communications has attracted immense attention in recent years. In order to facilitate OAM-guidance, novel fibers have been proposed and developed, including a class of so-called ring-fibers. In these fibers, the wave-guiding region is a high-index annulus instead of a conventional circular core, which for reasons related to polarization-dependent differential phase shifts for light at waveguide boundaries, leads to enhanced stability for OAM modes. We review the theory and implementation of this nascent class of waveguides, and discuss the opportunities and limitations they present for OAM scalability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.