The specific interaction of a variety of modified hevein domains to chitooligosaccharides has been studied by NMR spectroscopy in order to assess the importance of aromatic-carbohydrate interactions for the molecular recognition of neutral sugars. These mutant AcAMP2-like peptides, which have 4-fluoro-phenylalanine, tryptophan, or 2-naphthylalanine at the key interacting positions, have been prepared by solid-phase synthesis. Their three-dimensional structures, when bound to the chitin-derived trisaccharide, have been deduced by NMR spectroscopy. By using DYANA and restrained molecular dynamics simulations with the AMBER 5.0 force field, the three-dimensional structures of the protein-sugar complexes have been obtained. The thermodynamic analysis of the interactions that occur upon complex formation have also been carried out. Regarding binding affinity, the obtained data have permitted the deduction that the larger the aromatic group, the higher the association constant and the binding enthalpy. In all cases, entropy opposes binding. In contrast, deactivation of the aromatic rings by attaching fluorine atoms decreases the binding affinity, with a concomitant decrease in enthalpy. The role of the chemical nature of the aromatic ring for establishing sugar contacts has been thus evaluated.
HEV32, a 32-residue, truncated hevein lacking eleven C-terminal amino acids, was synthesized by solid-phase methodology and correctly folded with three cysteine bridge pairs. The affinities of HEV32 for small chitin fragments--in the forms of N,N',N"-triacetylchitotriose ((GlcNAc)3) (millimolar) and N,N',N",N"',N"",N""'-hexaacetylchitohexaose ((GlcNAc)6) (micromolar)--as measured by NMR and fluorescence methods, are comparable with those of native hevein. The HEV32 ligand-binding process is enthalpy driven, while entropy opposes binding. The NMR structure of ligand-bound HEV32 in aqueous solution was determined to be highly similar to the NMR structure of ligand-bound hevein. Solvated molecular-dynamics simulations were performed in order to monitor the changes in side-chain conformation of the binding site of HEV32 and hevein upon interaction with ligands. The calculations suggest that the Trp21 side-chain orientation of HEV32 in the free form differs from that in the bound state; this agrees with fluorescence and thermodynamic data. HEV32 provides a simple molecular model for studying protein-carbohydrate interactions and for understanding the physiological relevance of small native hevein domains lacking C-terminal residues.
A series of N-acetyl-chitooligosaccharides (GlcNAc)(1-6) have been studied by a nuclear magnetic resonance (NMR) method, diffusion ordered spectroscopy (DOSY). DOSY has also been applied to two additional synthetic related oligosaccharides [GlcNH(2)-(GlcNAc)(4) and GlcNH(2)-(GlcNAc)(2)-GlcNAcSO(3)Na]. A plot of the log of the determined diffusion coefficients (logD) of (GlcNAc)(n) versus the log of molecular weight was linear (6 points, R(2) = 0.995). The molecular weights of the two synthetic chitin derivatives could be estimated to within 10% error. The processed NMR data of all the chitooligosaccharides was also plotted in a polyacrylamide gel-like format to aid visual interpretation. Moreover, the logD value of the NMR signal resonances of a chitin-binding protein (hevein) changed as a function of a given titrated ligand, (GlcNAc)(6). Evidence for a 2:1 hevein:(GlcNAc)(6) complex is detected by DOSY at high hevein:(GlcNAc)(6) ratios. This data is consistent with published analytical ultracentrifugation and isothermal titration calorimetry data. A 1:1 complex is preferred at higher ligand concentrations. DOSY can complement size exclusion chromatography in carbohydrate research with the advantage that oligosaccharides are more readily detected by NMR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.