Porous organic materials have garnered colossal interest with the scientific fraternity due to their excellent gas sorption performances, catalytic abilities, energy storage capacities, and other intriguing applications. This review encompasses the recent significant breakthroughs and the conventional functions and practices in the field of porous organic materials to find useful applications and imparts a comprehensive understanding of the strategic evolution of the design and synthetic approaches of porous organic materials with tunable characteristics. We present an exhaustive analysis of the design strategies with special emphasis on the topologies of crystalline and amorphous porous organic materials. In addition to elucidating the structure-function correlation and state-of-the-art applications of porous organic materials, we address the challenges and restrictions that prevent us from realizing porous organic materials with tailored structures and properties for useful applications.
We report the first organically synthesized sp-sp hybridized porous carbon, OSPC-1. This new carbon shows electron conductivity, high porosity, the highest uptake of lithium ions of any carbon material to-date, and the ability to inhibit dangerous lithium dendrite formation. The new carbon exhibits exceptional potential as anode material for lithium-ion batteries (LIBs) with high capacity, excellent rate capability, long cycle life, and potential for improved safety performance.
Amorphous network materials are increasingly important with applications including as supercapacitors, battery anodes, and proton conduction membranes. Design of these materials is hampered by the amorphous nature of the structure and sensitivity to synthetic conditions. Here, we show that through artificial synthesis, fully mimicking the catalytic formation cycle and full synthetic conditions, we can generate structural models that can fully describe the physical properties of these amorphous network materials. This opens up pathways for rational design where complex structural influences, such as solvent and catalyst choice, can be taken into account.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.