A review of the development and implementation of a 4-year medical student integrated ultrasound curriculum is presented. Multiple teaching and assessment modalities are discussed as well as results from testing and student surveys. Lessons learned while establishing the curriculum are summarized. It is concluded that ultrasound is a well received, valuable teaching tool across all 4 years of medical school, and students learn ultrasound well, and they feel their ultrasound experience enhances their medical education.
Interest in ultrasound education in medical schools has increased dramatically in recent years as reflected in a marked increase in publications on the topic and growing attendance at international meetings on ultrasound education. In 2006, the University of South Carolina School of Medicine introduced an integrated ultrasound curriculum (iUSC) across all years of medical school. That curriculum has evolved significantly over the 9 years. A review of the curriculum is presented, including curricular content, methods of delivery of the content, student assessment, and program assessment. Lessons learned in implementing and expanding an integrated ultrasound curriculum are also presented as are thoughts on future directions of undergraduate ultrasound education. Ultrasound has proven to be a valuable active learning tool that can serve as a platform for integrating the medical student curriculum across many disciplines and clinical settings. It is also well-suited for a competency-based model of medical education. Students learn ultrasound well and have embraced it as an important component of their education and future practice of medicine. An international consensus conference on ultrasound education is recommended to help define the essential elements of ultrasound education globally to ensure ultrasound is taught and ultimately practiced to its full potential. Ultrasound has the potential to fundamentally change how we teach and practice medicine to the benefit of learners and patients across the globe.Electronic supplementary materialThe online version of this article (doi:10.1186/s13089-015-0035-3) contains supplementary material, which is available to authorized users.
There were alterations in several but not all time points. The local application of platelet-derived growth factor alters the tissue's mechanical properties during free tendon graft remodeling after anterior cruciate ligament reconstruction. Growth factors present a promising tool toward the complete mechanical restitution of a healing ligament substitute.
The flexor tendon is suitable, and sheep appear to be an appropriate animal model for soft-tissue graft ACL reconstruction. They tolerate the graft harvest well and quickly return to full weight-bearing and physiological movement. Their knees become stable without showing signs of macroscopically evident osteoarthritis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.