The nearly universal pattern that species richness increases from the poles to the equator (the latitudinal diversity gradient [LDG]) has been of intense interest since its discovery by early natural-history explorers. Among the many hypotheses proposed to explain the LDG, latitudinal variation in (1) productivity, (2) time and area available for diversification, and (3) speciation and/or extinction rates have recently received the most attention. Because tropical regions are older and were formerly more widespread, these factors are often intertwined, hampering efforts to distinguish their relative contributions to the LDG. Here we examine the global distribution of endemic lake fishes to determine how lake age, area, and latitude each affect the probability of speciation and the extent of diversification occurring within a lake. We analyzed the distribution of endemic fishes worldwide (1,933 species and subspecies from 47 families in 2,746 lakes) and find that the probability of a lake containing an endemic species and the total number of endemics per lake increase with lake age and area and decrease with latitude. Moreover, the geographic locations of endemics in 34 of 41 families are found at lower latitudes than those of nonendemics. We propose that the greater diversification of fish at low latitudes may be driven in part by ecological opportunities promoted by tropical climates and by the coevolution of species interactions.
The classical
theory of island biogeography
, which predicts species richness using island area and isolation, has been expanded to include contributions from marine subsidies, i.e.
subsidized island biogeography
(SIB)
theory
. We tested the effects of marine subsidies on species diversity and population density on productive temperate islands, evaluating SIB predictions previously untested at comparable scales and subsidy levels. We found that the diversity of terrestrial breeding bird communities on 91 small islands (approx. 0.0001–3 km
2
) along the Central Coast of British Columbia, Canada were correlated most strongly with island area, but also with marine subsidies. Species richness increased and population density decreased with island area, but isolation had no measurable influence. Species richness was negatively correlated with marine subsidy, measured as forest-edge soil δ
15
N. Density, however, was higher on islands with higher marine subsidy, and a negative interaction between area and subsidy indicates that this effect is stronger on smaller islands, offering some support for SIB. Our study emphasizes how subsidies from the sea can shape diversity patterns on islands and can even exceed the importance of isolation in determining species richness and densities of terrestrial biota.
Biotic homogenization, the loss of local biotic distinctiveness among locations (beta diversity), is a form of global change that can result from the widespread introduction of non-native species. Here, we model this process using only species' occupancy rates--the proportion of sites they occupy--without reference to their spatial arrangement. The nonspatial model unifies many empirical results and reliably explains >90% of the variance in species' effects on beta diversity. It also provides new intuitions and principles, including the conditions under which species' appearance, spread, or extirpation will homogenize or differentiate landscapes. Specifically, the addition or spread of exotic species that are more common than the native background rate (effective occupancy) homogenizes landscapes, while driving such species to extinction regionally or introducing rarer species differentiates them. Given the primacy of occupancy and our model's ability to explain its role, homogenization research can now focus on other factors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.