Visual information about speech content from the talker’s mouth is often available before auditory information from the talker's voice. Here we examined perceptual and neural responses to words with and without this visual head start. For both types of words, perception was enhanced by viewing the talker's face, but the enhancement was significantly greater for words with a head start. Neural responses were measured from electrodes implanted over auditory association cortex in the posterior superior temporal gyrus (pSTG) of epileptic patients. The presence of visual speech suppressed responses to auditory speech, more so for words with a visual head start. We suggest that the head start inhibits representations of incompatible auditory phonemes, increasing perceptual accuracy and decreasing total neural responses. Together with previous work showing visual cortex modulation (Ozker et al., 2018b) these results from pSTG demonstrate that multisensory interactions are a powerful modulator of activity throughout the speech perception network.
The superior frontal gyrus (SFG) is an important region implicated in a variety of tasks including motor movement, working memory, resting‐state, and cognitive control. A detailed understanding of the subcortical white matter of the SFG could improve postoperative morbidity related to surgery around this gyrus. Through DSI‐based fiber tractography validated by gross anatomical dissection, we characterized the fiber tracts of the SFG based on their relationships to other well‐known neuroanatomic structures. Diffusion imaging from the Human Connectome Project from 10 healthy adult subjects was used for fiber tractography. We evaluated the SFG as a whole based on its connectivity with other regions. All tracts were mapped in both hemispheres, and a lateralization index was calculated based on resultant tract volumes. Ten cadaveric dissections were then performed using a modified Klingler technique to delineate the location of major tracts integrated within the SFG. We identified four major SFG connections: the frontal aslant tract connecting to the inferior frontal gyrus; the inferior fronto‐occipital fasciculus connecting to the cuneus, lingual gyrus, and superior parietal lobule; the cingulum connecting to the precuneus and parahippocampal gyrus/uncus; and a callosal fiber bundle connecting the SFG bilaterally. The functional networks of the SFG involve a complex series of white matter tracts integrated within the gyrus, including the FAT, IFOF, cingulum, and callosal fibers. Postsurgical outcomes related to this region may be better understood in the context of the fiber‐bundle anatomy highlighted in this study. Clin. Anat. 33:823–832, 2020. © 2019 Wiley Periodicals, Inc.
Mutations in the neurofibromin 2 (NF2) gene were among the first genetic alterations implicated in meningioma tumorigenesis, based on analysis of neurofibromatosis type 2 (NF2) patients who not only develop vestibular schwannomas but later have a high incidence of meningiomas. The NF2 gene product, merlin, is a tumor suppressor that is thought to link the actin cytoskeleton with plasma membrane proteins and mediate contact-dependent inhibition of proliferation. However, the early recognition of the crucial role of NF2 mutations in the pathogenesis of the majority of meningiomas has not yet translated into useful clinical insights, due to the complexity of merlin’s many interacting partners and signaling pathways. Next-generation sequencing studies and increasingly sophisticated NF2-deletion-based in vitro and in vivo models have helped elucidate the consequences of merlin loss in meningioma pathogenesis. In this review, we seek to summarize recent findings and provide future directions toward potential therapeutics for this tumor.
Background and Purpose-Level of consciousness is frequently assessed by command-following ability in the clinical setting. However, it is unclear what brain circuits are needed to follow commands. We sought to determine what networks differentiate command following from noncommand following patients after hemorrhagic stroke. Methods-Structural MRI, resting-state functional MRI, and electroencephalography were performed on 25 awake and unresponsive patients with acute intracerebral and subarachnoid hemorrhage. Structural injury was assessed via volumetric T1-weighted MRI analysis. Functional connectivity differences were analyzed against a template of standard resting-state networks. The default mode network (DMN) and the task-positive network were investigated using seedbased functional connectivity. Networks were interrogated by pairwise coherence of electroencephalograph leads in regions of interest defined by functional MRI. Results-Functional imaging of unresponsive patients identified significant differences in 6 of 16 standard resting-state networks. Significant voxels were found in premotor cortex, dorsal anterior cingulate gyrus, and supplementary motor area. Direct interrogation of the DMN and task-positive network revealed loss of connectivity between the DMN and the orbitofrontal cortex and new connections between the task-positive network and DMN. Coherence between electrodes corresponding to right executive network and visual networks was also decreased in unresponsive patients. Conclusions-Resting
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.