Macromolecular adhesive associations between cells are important for transmitting spatial and temporal information that is critical for immune system function. One such group of proteins, the intercellular adhesion molecules (ICAMs), has grown as newly identified members are revealed. In addition, the functions of the ICAMs, in general, have begun to be better understood, including intracellular signaling events. This information has led to the design of novel therapeutic agents that may prove effective in a variety of disease states.
Intercellular adhesion molecule-5 (ICAM-5) is a dendritically polarized membrane glycoprotein in telencephalic neurons, which shows heterophilic binding to leukocyte β2-integrins. Here, we show that the human ICAM-5 protein interacts in a homophilic manner through the binding of the immunoglobulin domain 1 to domains 4–5. Surface coated ICAM-5-Fc promoted dendritic outgrowth and arborization of ICAM- 5–expressing hippocampal neurons. During dendritogenesis in developing rat brain, ICAM-5 was in monomer form, whereas in mature neurons it migrated as a high molecular weight complex. The findings indicate that its homophilic binding activity was regulated by nonmonomer/monomer transition. Thus, ICAM-5 displays two types of adhesion activity, homophilic binding between neurons and heterophilic binding between neurons and leukocytes.
Intercellular adhesion molecule-5 (ICAM-5, telencephalin) is a member of the immunoglobulin superfamily expressed on telencephalic neurons, and serves as a ligand for the leukocyte integrin CD11a/CD18. We studied here the binding site in ICAM-5 for CD11a/CD18. Protein constructs containing the first immunoglobulin domain of ICAM-5 were able to support CD11a/CD18 interaction, while deletion of the first domain abolished binding. Monoclonal antibodies reacting with the first domain of ICAM-5 also completely blocked the interaction. The soluble first domain of ICAM-5 inhibited the binding of T cells to immobilized ICAM-5 at concentrations of 50 nM and higher. Interestingly, the sixth domain of ICAM-5 was also able to support leukocyte binding, but this binding activity may not involve leukocyte integrins. To test the involvement of ICAM-5 in leukocyte-neuron interactions, an assay using human T cells binding to rat hippocampal neurons was established. This binding was blocked by monoclonal antibodies against CD11a/CD18 and ICAM-5. Thus ICAM-5 may act as a major adhesion molecule for leukocyte binding to neurons in the central nervous system.
The elevated expression of cell adhesion molecules (CAMs) on the lumenal surface of vascular endothelial cells is a critical early event in the complex inflammatory process. The adhesive interactions of these CAMs that include E-selectin, ICAM-1, and VCAM-1 with their counter-receptors on leukocytes, such as integrins of the alpha(L)beta(2) family, result in migration of the leukocytes to the site of inflammation and cause tissue injury. Pharmaceutical agents that could suppress the induced expression of one or more of these cell adhesion molecules would provide a novel mechanism to attenuate the inflammatory responses associated with chronic inflammatory diseases. A-205804 (1), a potent and selective inhibitor of the induced expression of E-selectin and ICAM-1 over VCAM-1, was further modified with emphasis at the C-4 and C-2 positions to identify a more potent drug candidate with a good pharmacokinetic profile and physical properties. Replacement of the C-4 sulfur linkage in 1 with an oxygen atom eliminated one of the two major metabolites for this lead molecule. The para-position of the 4-phenoxy group of the thieno[2,3-c]pyridine lead is found to be very critical for a higher in vitro potency and selectivity of E-selectin and ICAM-1 over VCAM-1 expression. This position is presumably close to the solvent-accessible region of the target protein-inhibitor complex. An attempt to install a water-solubilizing group at the para-position of the phenoxy group to increase the aqueous solubility of this lead series through various linkages failed to provide an ideal inhibitor. Only small substituents such as fluorine are tolerated at the meta- and ortho-positions of the 4-phenoxy to retain a good in vitro potency. Bromo, trifluoromethyl, pyrazol-1-yl, and imidazol-1-yl are among the better substituents at the para-position. With fine-tuning at the C-2 position we discovered a series of very potent (IC(50) < 5 nM for ICAM-1) and selective (>200-fold vs VCAM-1) inhibitors with a good pharmacokinetic profile. Demonstrated efficacy in a rat rheumatoid arthritis model and in a mice asthma model with selected compounds is also reported.
Intercellular adhesion molecule‐5 (ICAM‐5, telencephalin) is a member of the immunoglobulin superfamily expressed on telencephalic neurons, and serves as a ligand for the leukocyte integrin CD11a/CD18. We studied here the binding site in ICAM‐5 for CD11a/CD18. Protein constructs containing the first immunoglobulin domain of ICAM‐5 were able to support CD11a/CD18 interaction, while deletion of the first domain abolished binding. Monoclonal antibodies reacting with the first domain of ICAM‐5 also completely blocked the interaction. The soluble first domain of ICAM‐5 inhibited the binding of T cells to immobilized ICAM‐5 at concentrations of 50 nM and higher. Interestingly, the sixth domain of ICAM‐5 was also able to support leukocyte binding, but this binding activity may not involve leukocyte integrins. To test the involvement of ICAM‐5 in leukocyte‐neuron interactions, an assay using human T cells binding to rat hippocampal neurons was established. This binding was blocked by monoclonal antibodies against CD11a/CD18 and ICAM‐5. Thus ICAM‐5 may act as a major adhesion molecule for leukocyte binding to neurons in the central nervous system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.