Over 80% of triple-negative breast cancers (TNBC) express mutant p53 (mtp53) and some contain oncogenic gain-offunction (GOF) p53. We previously reported that GOF mtp53 R273H upregulates the chromatin association of mini chromosome maintenance (MCM) proteins MCM2-7 and PARP and named this the mtp53-PARP-MCM axis. In this study, we dissected the function and association between mtp53 and PARP using a number of different cell lines, patient-derived xenografts (PDX), tissue microarrays (TMA), and The Cancer Genome Atlas (TCGA) database. Endogenous mtp53 R273H and exogenously expressed R273H and R248W bound to nascent 5-ethynyl-2-deoxyuridine-labeled replicating DNA. Increased mtp53 R273H enhanced the association of mtp53 and PARP on replicating DNA. Blocking poly-ADP-ribose gylcohydrolase also enhanced this association. Moreover, mtp53 R273H expression enhanced overall MCM2 levels, promoted cell proliferation, and improved the synergistic cytotoxicity of treatment with the alkylating agent temozolomide in combination with the PARP inhibitor (PARPi) talazoparib. Staining of p53 and PARP1 in breast cancer TMAs and comparison with the TCGA database indicated a higher double-positive signal in basal-like breast cancer than in luminal A or luminal B subtypes. Higher PARP1 protein levels and PAR proteins were detected in mtp53 R273H than in wildtype p53-expressing PDX samples. These results indicate that mtp53 R273H and PARP1 interact with replicating DNA and should be considered as dual biomarkers for identifying breast cancers that may respond to combination PARPi treatments.
Finding new optical probes to detect and track amyloid protein aggregates is key to understanding and defeating the myriad of neurodegenerative and other diseases associated with these misfolded proteins. Herein we report that a series of fluorescent, soluble oligo(p-phenylene ethynylene)s (OPEs) are able to detect amyloids in vitro by massive binding-activated superluminescence, with low micromolar affinity and high selectivity for the amyloid conformer. The OPEs track the kinetics of amyloid fibril formation from native hen egg white lysozyme (HEWL) similarly to thioflavin T (ThT), and the dependence of binding affinity on OPE length supports the theory of a linear binding groove. We hypothesize, based on spectral properties, induced circular dichroism, and previous work in analogous systems, that the fluorescence turn-on mechanism is a combination of the reduction of static solvent-mediated quenching at the ethyl ester end groups of the phenylene ethynylene fluorophore and the formation of chiral J-type aggregates templated on the amyloid fibril surface.
The DNA repair enzyme poly(ADP-ribose) polymerase 1 (PARP-1) is overexpressed in glioblastoma, with overall low expression in healthy brain tissue. Paired with the availability of specific small molecule inhibitors, PARP-1 is a near-ideal target to develop novel radiotherapeutics to induce DNA damage and apoptosis in cancer cells, while sparing healthy brain tissue. We synthesized anI-labeled PARP-1 therapeutic and investigated its pharmacology in vitro and in vivo. A subcutaneous tumor model was used to quantify retention times and therapeutic efficacy. A potential clinical scenario, intratumoral convection-enhanced delivery, was mimicked using an orthotopic glioblastoma model combined with an implanted osmotic pump system to study local administration of I-PARPi (PARPi is PARP inhibitor).I-PARPi is a 1(2H)-phthalazinone, similar in structure to the Food and Drug Administration-approved PARP inhibitor AZD-2281. In vitro studies have shown that I-PARPi and AZD-2281 share similar pharmacologic profiles.I-PARPi delivered 134.1 cGy/MBq intratumoral injected activity. Doses to nontarget tissues, including liver and kidney, were significantly lower. Radiation damage and cell death in treated tumors were shown by p53 activation in U87-MG cells transfected with a p53-bioluminescent reporter. Treated mice showed significantly longer survival than mice receiving vehicle (29 vs. 22 d, < 0.005) in a subcutaneous model. Convection-enhanced delivery demonstrated efficient retention of I-PARPi in orthotopic brain tumors, while quickly clearing from healthy brain tissue. Our results demonstrate I-PARPi's high potential as a therapeutic and highlight PARP's relevance as a target forradionuclide therapy. Radiation plays an integral role in brain tumor therapy, and radiolabeled PARP therapeutics could ultimately lead to improvements in the standard of care.
In the present study, we examined the inactivation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by synthetic conjugated polymers and oligomers developed in our laboratories as antimicrobials for bacteria, fungi, and nonenveloped viruses. The results show highly effective light-induced inactivation with several of these oligomers and polymers including irradiation with near-UV and visible light. In the best case, one oligomer induced a 5-log reduction in pfu/mL within 10 min. In general, the oligomers are more active than the polymers; however, the polymers are active with longer wavelength visible irradiation. Although not studied quantitatively, the results show that in the presence of the agents at concentrations similar to those used in the light studies, there is essentially no dark inactivation of the virus. Because three of the five materials/compounds examined are quaternary ammonium derivatives, this study indicates that conventional quaternary ammonium antimicrobials may not be active against SARS-CoV-2. Our results suggest several applications involving the incorporation of these materials in wipes, sprays, masks, and clothing and other personal protection equipment that can be useful in preventing infections and the spreading of this deadly virus and future outbreaks from similar viruses.
Developing new molecular ligands for the direct detection and tracking of amyloid protein aggregates is key to understanding and defeating myriad neurodegenerative and other disorders including Alzheimer’s and Parkinson’s diseases. A crucial factor in the performance of an amyloid dye is its ability to detect the amyloid structural motif independent of the sequence of the amyloid-forming protomer. The current study investigates structure–function relationships of a class of novel phenyleneethynylene (PPE)-based dyes and fluorescent polymers using amyloid fibrils formed by two model proteins: lysozyme and insulin. A small library of 18 PPE compounds that vary in molecular weights, charge densities, water solubilities, and types and geometries of functional groups was tested. One compound, the small anionic oligo(p-phenylene ethynylene) electrolyte OPE1, was identified as a selective sensor for the amyloid conformation of both lysozyme and insulin. On the basis of protein binding and photophysical changes observed in the dye from this set of PPE compounds, keys to the selective detection of the amyloid protein conformation include moderate size, negative charge, and substituents that provide high microenvironment sensitivity to the fluorescence yield. These principles can serve as a guide for the further refinement of the effective amyloid-sensing molecules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.