Numerous national associations and multiple reviews have documented the safety and efficacy of strength training for children and adolescents. The literature highlights the significant training-induced increases in strength associated with youth strength training. However, the effectiveness of youth strength training programs to improve power measures is not as clear. This discrepancy may be related to training and testing specificity. Most prior youth strength training programs emphasized lower intensity resistance with relatively slow movements. Since power activities typically involve higher intensity, explosive-like contractions with higher angular velocities (e.g., plyometrics), there is a conflict between the training medium and testing measures. This meta-analysis compared strength (e.g., training with resistance or body mass) and power training programs (e.g., plyometric training) on proxies of muscle strength, power, and speed. A systematic literature search using a Boolean Search Strategy was conducted in the electronic databases PubMed, SPORT Discus, Web of Science, and Google Scholar and revealed 652 hits. After perusal of title, abstract, and full text, 107 studies were eligible for inclusion in this systematic review and meta-analysis. The meta-analysis showed small to moderate magnitude changes for training specificity with jump measures. In other words, power training was more effective than strength training for improving youth jump height. For sprint measures, strength training was more effective than power training with youth. Furthermore, strength training exhibited consistently large magnitude changes to lower body strength measures, which contrasted with the generally trivial, small and moderate magnitude training improvements of power training upon lower body strength, sprint and jump measures, respectively. Maturity related inadequacies in eccentric strength and balance might influence the lack of training specificity with the unilateral landings and propulsions associated with sprinting. Based on this meta-analysis, strength training should be incorporated prior to power training in order to establish an adequate foundation of strength for power training activities.
Data suggest that RM-induced neural inhibition decreased MVIC F200 and nullified the testing-induced increase in evoked pain associated with 70% tetanic stimulation.
Roller massage (RM) has been reported to increase range-of-motion (ROM) without subsequent performance decrements. However, the effects of different rolling forces have not been examined. The purpose of this study was to compare the effects of sham (RMsham), moderate (RMmod) and high (RMhigh) RM forces, calculated relative to the individuals' pain perception, on ROM, strength and jump parameters. Sixteen healthy individuals (27 ± 4 years) participated in this study. The intervention involved three 60-second quadriceps RM bouts with RMlow (3.9/10±0.64 rating of perceived pain{RPP}), RMmod (6.2/10±0.64 RPP) and RMhigh (8.2/10±0.44 RPP) pain conditions respectively. A within-subject design was used to assess dependent variables (active and passive knee flexion ROM, single-leg drop jump (DJ) height, DJ contact time, DJ performance index, maximum voluntary isometric contraction (MVIC) force, and force produced in the first 200 ms (F200) of the knee extensors and flexors). A two-way repeated measures analysis of variance (ANOVA) showed a main effect of testing time in active (p < 0.001, d = 2.54) and passive (p < 0.001, d = 3.22) ROM. Independent of the RM forces, active and passive ROM increased by 7.0% (p = 0.03, d = 2.25) and 15.4% (p < 0.001, d = 3.73) from pre- to post measures, respectively. DJ and MVIC parameters were unaffected from pre- to post-tests (p > 0.05, d = 0.33 - 0.84). RM can be efficiently used to increase ROM without substantial pain and without subsequent performance impairments.
The lack of stretch-induced force and fatigue changes suggests that rather than a mechanical or neural drive mechanism, an enhanced stretch tolerance was likely the significant factor in the improved ROM.
Hodgson, DD, Quigley, PJ, Whitten, JHD, Reid, JC, and Behm, DG. Impact of 10-minute interval roller massage on performance and active range of motion. J Strength Cond Res XX(X): 000-000, 2017-Roller massage (RM) has been shown to increase range of motion (ROM) without subsequent performance deficits. However, prolonged static stretching (SS) can induce performance impairments. The objective of this study was to examine the effects of combining SS and RM with and without subsequent RM on ROM and neuromuscular performance. Subjects (n = 12) participated in 5 sessions: (a) SS only (SS_rest), (b) SS + RM (SS + RM_rest), (c) SS with RM at 10 and 20 minutes after stretch (SS_RM), (d) SS + RM with RM at 10 and 20 minutes after stretch (SS + RM_RM), and (e) control. For the SS conditions, the quadriceps and hamstrings received passive SS for 2 × 30 seconds each. For the SS + RM conditions, SS was applied to the quadriceps and hamstrings for 30 seconds each, and RM was performed for 30 seconds per muscle. SS_RM and SS + RM_RM conditions received an additional 30-second RM at 10 and 20 minutes after warm-up, whereas sessions without additional RM rested for the same duration. Testing measures included hip flexion (HF) and knee flexion (KF) active and passive ROM, hurdle jump height and contact time, countermovement jump height, and maximal voluntary isometric contraction force. Initial KF and HF ROM improvements provided by SS_RM and SS + RM_RM were sustained up to 30 minutes after intervention. Furthermore, SS_RM exhibited greater ROM compared with sessions lacking additional RM in active and passive HF as well as active and passive KF. Similarly, SS + RM_RM elicited greater KF and HF ROM improvements than SS_rest. In conclusion, active KF and HF ROM improvements were prolonged by additional RM, whereas neuromuscular performance remained relatively unaffected.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.