Optically active point defects in crystals have gained widespread attention as photonic systems that can find use in quantum information technologies. However challenges remain in the placing of individual defects at desired locations, an essential element of device fabrication. Here we report the controlled generation of single nitrogen-vacancy (NV) centres in diamond using laser writing. The use of aberration correction in the writing optics allows precise positioning of vacancies within the diamond crystal, and subsequent annealing produces single NV centres with up to 45% success probability, within about 200 nm of the desired position. Selected NV centres fabricated by this method display stable, coherent optical transitions at cryogenic temperatures, a pre-requisite for the creation of distributed quantum networks of solid-state qubits. The results illustrate the potential of laser writing as a new tool for defect engineering in quantum technologies.Comment: 21 pages including Supplementary informatio
A key obstacle to the experimental realization of many photonic quantum-enhanced technologies is the lack of low-loss sources of single photons in pure quantum states. We demonstrate a promising solution: generation of heralded single photons in a silica photonic chip by spontaneous four-wave mixing. A heralding efficiency of 40%, corresponding to a preparation efficiency of 80% accounting for detector performance, is achieved due to efficient coupling of the low-loss source to optical fibers. A single photon purity of 0.86 is measured from the source number statistics without narrow spectral filtering, and confirmed by direct measurement of the joint spectral intensity. We calculate that similar high-heralded-purity output can be obtained from visible to telecom spectral regions using this approach. On-chip silica sources can have immediate application in a wide range of single-photon quantum optics applications which employ silica photonics.
Atomic defects in wide band gap materials show great promise for development of a new generation of quantum information technologies, but have been hampered by the inability to produce and engineer the defects in a controlled way. The nitrogen-vacancy (NV) color center in diamond is one of the foremost candidates, with single defects allowing optical addressing of electron spin and nuclear spin degrees of freedom with potential for applications in advanced sensing and computing. Here we demonstrate a method for the deterministic writing of individual NV centers at selected locations with high positioning accuracy using laser processing with online fluorescence feedback. This method provides a new tool for the fabrication of engineered materials and devices for quantum technologies and offers insight into the diffusion dynamics of point defects in solids. Main Text:The engineering of materials at the scale of individual atoms has long been viewed as a holy grail of technology. With the extreme miniaturization of modern semiconductor technology to sub-10 nm feature sizes and the emerging promise of quantum technologies that rely inherently on the principles of quantum physics, the ability to fabricate and manipulate atomic-scale systems is becoming increasingly important.One promising approach to quantum technologies is the use of 'color center' point defects in wide band gap materials that display strong optical transitions, allowing the addressing of single atoms using optical wavelengths within the transparency window of the solid. Fluorescence from single color centers displays quantum statistics with potential for use in communications, sensingWe would like to acknowledge DeBeers and Element Six for providing suitably characterized diamond samples for this work, and in particular Daniel Twitchen and David Fisher for their comments on the manuscript. Data reported in the paper are presented in the Supplementary Materials and are archived at (tbc). The work was funded by the UK Engineering and Physical Sciences Research Council (EPSRC) through the UK hub in Networked Quantum Information Technologies (NQIT), grant # EP/M013243/1. Y-CC, B Griffiths and SN carried out the experiments and performed the data analysis with supervision from JS and PS; B Griffiths, LW, SJ and PS constructed the laser writing and fluorescence feedback apparatus; SI, YL, CJS and BLG carried out the Hahn echo and spatial localization measurements under the supervision of GM and MN; and JS, YCC, PS and MB conceived the experiment; all authors contributed to writing the manuscript. Supplementary Materials: Materials and Methods:The samples used were single-crystal type 1b diamond with nitrogen concentration of 1.8 ppm, produced by a High Pressure High Temperature (HPHT) technique. The diamond was cut and polished with flat surfaces parallel to the (110) plane of the cubic crystal.The optical layout for the combined laser processing and fluorescence feedback apparatus is shown in Figure S1. The laser processing was performed using a regenerat...
Adaptive optics are becoming a valuable tool for laser processing, providing enhanced functionality and flexibility for a range of systems. Using a single adaptive element, it is possible to correct for aberrations introduced when focusing inside the workpiece, tailor the focal intensity distribution for the particular fabrication task and/or provide parallelisation to reduce processing times. This is particularly promising for applications using ultrafast lasers for three-dimensional fabrication. We review recent developments in adaptive laser processing, including methods and applications, before discussing prospects for the future.
The spectral dispersion of ultrashort pulses allows the simultaneous focusing of light in both space and time, which creates so-called spatiotemporal foci. Such space–time coupling may be combined with the existing holographic techniques to give a further dimension of control when generating focal light fields. In the present study, it is shown that a phase-only hologram placed in the pupil plane of an objective and illuminated by a spatially chirped ultrashort pulse can be used to generate three-dimensional arrays of spatio-temporally focused spots. By exploiting the pulse front tilt generated at focus when applying simultaneous spatial and temporal focusing (SSTF), it is possible to overlap neighboring foci in time to create a smooth intensity distribution. The resulting light field displays a high level of axial confinement, with experimental demonstrations given through two-photon microscopy and the non-linear laser fabrication of glass.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.