To date, rehabilitative exercises aimed at strengthening the pharyngeal muscles have not been developed due to the inability to successfully overload and fatigue these muscles during their contraction, a necessary requirement for strength training. The purpose of this study was to test the hypothesis that applying resistance against anterosuperior movement of the hyolaryngeal complex will overload the pharyngeal muscles and by repetitive swallowing will result in their fatigue manifested by a reduction in pharyngeal peristaltic amplitude. Studies were done in two groups. In group 1 studies 15 healthy subjects (age: 42 ± 14 yr, 11 females) were studied to determine whether imposing resistance to swallowing using a handmade device can affect the swallow-induced hyolaryngeal excursion and related upper esophageal sphincter (UES) opening. In group 2, an additional 15 healthy subjects (age 56 ± 25 yr, 7 females) were studied to determine whether imposing resistance to the anterosuperior excursion of the hyolaryngeal complex induces fatigue manifested as reduction in pharyngeal contractile pressure during repeated swallowing. Analysis of the video recordings showed significant decrease in maximum deglutitive superior laryngeal excursion and UES opening diameter ( P < 0.01) due to resistive load. Consecutive swallows against the resistive load showed significant decrease in pharyngeal contractile integral (PhCI) values ( P < 0.01). Correlation analysis showed a significant negative correlation between PhCI and successive swallows, suggesting “fatigue” ( P < 0.001). In conclusion, repeated swallows against a resistive load induced by restricting the anterosuperior excursion of the larynx safely induces fatigue in pharyngeal peristalsis and thus has the potential to strengthen the pharyngeal contractile function.
Strength training of muscles involved in the pharyngeal phase of swallowing using the swallowing against laryngeal restriction technique is feasible and significantly improves key physiologic features of the pharyngeal phase of swallowing. These findings provide the basis for consideration of developing an exercise-based swallow health maintenance program for the elderly swallow health maintenance program for the elderly.
Oropharyngeal dysphagia due to upper esophageal sphincter (UES) dysfunction is commonly encountered in the clinical setting. Selective experimental perturbation of various components of the deglutitive apparatus can provide an opportunity to improve our understanding of the swallowing physiology and pathophysiology. The aim is to characterize the pharyngeal and UES deglutitive pressure phenomena in an experimentally induced restriction of UES opening in humans. We studied 14 volunteers without any dysphagic symptoms (7 men, 66 ± 11 yr) but with various supraesophageal reflux symptoms. To induce UES restriction, we used a handmade device that with adjustment could selectively apply 0, 20, 30, or 40 mmHg pressure perpendicularly to the cricoid cartilage. Deglutitive pharyngeal and UES pressure phenomena were determined during dry and 5- and 10-ml water swallows × 3 for each of the UES perturbations. External cricoid pressure against the UES resulted in a significant increase in hypopharyngeal intrabolus pressure and UES nadir deglutitive relaxation pressure for all tested swallowed volumes (P < 0.05). Application of external cricoid pressure increased the length of the UES high pressure zone from 2.5 ± 0.2 to 3.1 ± 0.2, 3.5 ± 0.1, and 3.7 ± 0.1 cm for 20, 30, and 40 mmHg cricoid pressure, respectively (P < 0.05). External cricoid pressure had no significant effect on pharyngeal peristalsis. On the other hand, irrespective of external cricoid pressure deglutitive velopharyngeal contractile integral progressively increased with increased swallowed volumes (P < 0.05). In conclusion, acute experimental restriction of UES opening by external cricoid pressure manifests the pressure characteristics of increased resistance to UES transsphincteric flow observed clinically without affecting the pharyngeal peristaltic contractile function.
Deglutitive Pharyngeal peristalsis generates pressures with significant degree of site-related and inter-subject variability. This variability is not influenced by age, position and volume of swallowed fluid.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.