TTh he e p pl la an nt t c ce el ll l w wa al ll l d de ec co om mp po os si in ng g m ma ac ch hi in ne er ry y u un nd de er rl li ie es s t th he e f fu un nc ct ti io on na al l d di iv ve er rs si it ty y o of f f fo or re es st t f fu un ng gi i T Th he e p pl la an nt t c ce el ll l w wa al ll l d de ec co om mp po os si in ng g m ma ac ch hi in ne er ry y u un nd de er rl li ie es s t th he e f fu un nc ct ti io on na al l d di iv ve er rs si it ty y o of f f fo or re es st t f fu un ng gi i
IMPORTANCEIt remains unknown whether SARS-CoV-2 infection specifically increases the risk of serious obstetric morbidity.OBJECTIVE To evaluate the association of SARS-CoV-2 infection with serious maternal morbidity or mortality from common obstetric complications.
Bis-indolylquinones represent a class of fungal natural products that display antiretroviral, antidiabetes, or cytotoxic bioactivities. Recent advances in Aspergillus genomic mining efforts have led to the discovery of the tdiA-E-gene cluster, which is the first genetic locus dedicated to bis-indolylquinone biosynthesis. We have now genetically and biochemically characterized the enzymes TdiA (bis-indolylquinone synthetase) and TdiD (L-tryptophan:phenylpyruvate aminotransferase), which, together, confer biosynthetic abilities for didemethylasterriquinone D to Aspergillus nidulans. This compound is the universal intermediate for all bis-indolylquinones. In this biochemical study of a bis-indolylquinone synthetase and a fungal natural product transaminase, we present a one-pot chemoenzymatic protocol to generate didemethylasterriquinone D in vitro. As TdiA resembles a nonribosomal peptide synthetase, yet catalyzes carbon-carbon-bond formation, we discuss the implications for peptide synthetase chemistry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.