Magni is an open source Python package that embraces compressed sensing and Atomic Force Microscopy (AFM) imaging techniques. It provides AFM-specific functionality for undersampling and reconstructing images from AFM equipment and thereby accelerating the acquisition of AFM images. Magni also provides researchers in compressed sensing with a selection of algorithms for reconstructing undersampled general images, and offers a consistent and rigorous way to efficiently evaluate the researchers own developed reconstruction algorithms in terms of phase transitions. The package also serves as a convenient platform for researchers in compressed sensing aiming at obtaining a high degree of reproducibility of their research.
Reconstruction of an undersampled signal is at the root of compressive sensing: when is an algorithm capable of reconstructing the signal? what quality is achievable? and how much time does reconstruction require? We have considered the worst-case performance of the smoothed 0 norm reconstruction algorithm in a noiseless setup. Through an empirical tuning of its parameters, we have improved the phase transition (capabilities) of the algorithm for fixed quality and required time. In this paper, we present simulation results that show a phase transition surpassing that of the theoretical 1 approach: the proposed modified algorithm obtains 1-norm phase transition with greatly reduced required computation time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.