Engineering flow processes to direct the microscopic structure of soft materials represents a growing area of materials research. In situ small-angle neutron scattering under flow (flow-SANS) is an attractive probe of fluid microstructure under simulated processing conditions, but current capabilities require many different sample environments to fully interrogate the deformations a fluid experiences in a realistic processing flow. Inspired by recent advances in microfluidics, we present a fluidic four-roll mill (FFoRM) capable of producing tunable 2D flow fields for in situ SANS measurements, that is intended to allow characterization of complex fluid nanostructure under arbitrary complex flows within a single sample environment. Computational fluid dynamics simulations are used to design a FFoRM that produces spatially homogeneous and sufficiently strong deformation fields. Particle tracking velocimetry experiments are then used to characterize the flows produced in the FFoRM for several classes of non-Newtonian fluids. Finally, a putative FFoRM-SANS workflow is demonstrated and validated through the characterization of flow-induced orientation in a semi-dilute cellulose nanocrystal dispersion under a range of 2D deformations. These novel experiments confirm that, for steady state straining flows at moderate strain rates, the nanocrystals orient along the principal strain-rate axis, in agreement with theories for rigid, rod-like Brownian particles in a homogeneous flow.
Controlling the structure of layered hybrid metal halide perovskites, such as the Ruddlesden-Popper (R-P) phases, is challenging because of their tendency to form mixtures of varying composition. Colloidal growth techniques, such as antisolvent precipitation, forms colloidal dispersions with properties that match bulk layered R-P phases, but controlling the composition of these particles remains challenging. Here, we explore the microstructure of particles of R-P phases of methylammonium lead iodide prepared by antisolvent precipitation from ternary mixtures of alkylammonium cations, where one cation can form perovskite phases (CH 3 NH 3 + ) and the other two promote layered structures as spacers (e.g. C 4 H 9 NH 3 + and C 12 H 25 NH 3 + ). We determine that alkylammonium spacers pack with constant methylene density in the R-P interlayer, and exclude interlayer solvent in dispersed colloids, regardless of length or branching. Using this result, we illustrate how the competition between cations that act as spacers between layers, or as grainterminating ligands, determines the colloidal microstructure of layered R-P crystallites in solution. Optical measurements reveal that quantum well dimensions can be tuned by engineering the ternary cation composition. Transmission synchrotron wide-angle X-ray scattering and small angle neutron scattering reveal changes in the structure of colloids in solvent and after deposition into thin films. In particular, we find that spacers can alloy between R-P layers if they share common steric arrangements, but tend to segregate into polydisperse R-P phases if they do not mix. This study provides a framework to compare the microstructure of colloidal layered perovskites and suggests clear avenues to control phase and colloidal morphology.
Complex nanoemulsions, comprising multiphase nanoscale droplets, hold considerable potential advantages as vehicles for encapsulation and delivery as well as templates for nanoparticle synthesis. Although methods exist to controllably produce complex emulsions on the microscale, very few methods exist to produce them on the nanoscale. Here, we examine a recently developed method involving a combination of high-energy emulsification with conventional cosurfactants to produce oil-water-oil (O/W/O) complex nanoemulsions. Specifically, we study in detail how the composition of conventional ethoxylated cosurfactants Span80 and Tween20 influences the morphology and structure of the resulting complex nanoemulsions in the water-cyclohexane system. Using a combination of small-angle neutron scattering and cryo-electron microscopy, we find that the cosurfactant composition controls the generation of complex droplet morphologies including core-shell and multicore-shell O/W/O nanodroplets, resulting in an effective state diagram for the selection of nanoemulsion morphology. Additionally, the cosurfactant composition can be used to control the thickness of the water shell contained within the complex nanodroplets. We hypothesize that this degree of control, despite the highly nonequilibrium nature of the nanoemulsions, is ultimately determined by a competition between the opposing spontaneous curvature of the two cosurfactants, which strongly influences the interfacial curvature of the nanodroplets as a result of their ultralow interfacial tension. This is supported by a correlation between cosurfactant compositions that produces complex nanoemulsions and those that produce homogeneous mixed micelles in equilibrium surfactant-cyclohexane solutions. Ultimately, we show that the formation of complex O/W/O nanoemulsions is weakly perturbed upon the addition of hydrophilic polymer precursors, facilitating their use as templates for the formation of polymer nanocapsules.
Attached is a PDF proof of your forthcoming article in Physical Review Materials. Your article has 21 pages and the Accession Code is MA10148.Please note that as part of the production process, APS converts all articles, regardless of their original source, into standardized XML that in turn is used to create the PDF and online versions of the article as well as to populate third-party systems such as Portico, Crossref, and Web of Science. We share our authors' high expectations for the fidelity of the conversion into XML and for the accuracy and appearance of the final, formatted PDF. This process works exceptionally well for the vast majority of articles; however, please check carefully all key elements of your PDF proof, particularly any equations or tables.Figures submitted electronically as separate files containing color appear in color in the journal. Specific Questions and Comments to Address for This Paper1 The .eps file for Fig. 2 does not match the ones in the PDF you supplied. Please confirm that the correct figure was used. 2 Please verfy "Sec. B" 3 Please provide location in Refs. [1,23,49] 4 Please provide page number in Ref. [5] 5 Please verify change in the page no. in Refs. [20,27,35,47,60] 6 Please provide volume and page number in Ref. [21] 7 Please update all information in Ref. [58]. 8 Please verify author name in Ref. [59]. 9 The citation of Refs. [69, 70,71,72,73,74,75,76,77,78] is missing in the text. Please cite the same in running text in sequence to avoid the renumbering of references. 10 Please provide publisher and location in Refs. [71,73]. FQ: This funding provider could not be uniquely identified during our search of the FundRef registry (or no Contract or Grant number was detected). Please check information and amend if incomplete or incorrect. Q: This reference could not be uniquely identified due to incomplete information or improper format. Please check all information and amend if applicable.ORCIDs: Please follow any ORCID links ( ) after the author names and verify that they point to the appropriate record for each author.Open Funder Registry: Information about an article's funding sources is now submitted to Crossref to help you comply with current or future funding agency mandates. Crossref's Open Funder Registry (https://www.crossref.org/services/funder-registry/) is the definitive registry of funding agencies. Please ensure that your acknowledgments include all sources of funding for your article following any requirements of your funding sources. Where possible, please include grant and award ids. Please carefully check the following funder information we have already extracted from your article and ensure its accuracy and completeness: U.
Understanding the complex connection between flow-processing history, fluid structure, and fluid properties represents a grand challenge for the engineering and fundamental study of nanostructured soft materials. To address this challenge, we report measurements using scanning small-angle x-ray scattering in a fluidic four-roll mill (FFoRM), which enables rapid nanostructural characterization of complex fluids under an unprecedentedly diverse range of flow histories. Combining this technique with analysis of the Lagrangian deformation history of fluid elements, we demonstrate rapid mapping of orientational ordering of fluids' nanostructure along diverse deformation trajectories that emulate those encountered in flow processing. Using demonstrative experiments on model rodlike nanoparticle dispersions, we show that differences in rod flexibility and rod-rod interactions play a significant role in determining the fluid's anisotropic structural response to similar flow histories. An analysis of the coupling between measured particle alignment and interparticle correlations reveals these differences to arise from the nature and strength of interparticle interactions in flow. These measurement and analysis techniques produce large datasets that hold promise toward advancing process-structure-property models and inverse design processes of flows that are tailored to produce targeted nanostructures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.