Bounded treewidth is one of the most cited combinatorial invariants, which was applied in the literature for solving several counting problems efficiently. A canonical counting problem is #Sat, which asks to count the satisfying assignments of a Boolean formula. Recent work shows that benchmarking instances for #Sat often have reasonably small treewidth. This paper deals with counting problems for instances of small treewidth. We introduce a general framework to solve counting questions based on state-of-the-art database management systems (DBMS). Our framework takes explicitly advantage of small treewidth by solving instances using dynamic programming (DP) on tree decompositions (TD). Therefore, we implement the concept of DP into a DBMS (PostgreSQL), since DP algorithms are already often given in terms of table manipulations in theory. This allows for elegant specifications of DP algorithms and the use of SQL to manipulate records and tables, which gives us a natural approach to bring DP algorithms into practice. To the best of our knowledge, we present the first approach to employ a DBMS for algorithms on TDs. A key advantage of our approach is that DBMS naturally allow to deal with huge tables with a limited amount of main memory (RAM), parallelization, as well as suspending computation.
Treewidth is one of the most prominent structural parameters. While numerous theoretical results establish tractability under the assumption of fixed treewidth, the practical success of exploiting this parameter is far behind what theoretical runtime bounds have promised. In particular, a naive application of dynamic programming (DP) on tree decompositions (TDs) suffers already from instances of medium width. In this paper, we present several measures to advance this paradigm towards general applicability in practice: We present nested DP, where different levels of abstractions are used to (recursively) compute TDs of a given instance. Further, we integrate the concept of hybrid solving, where subproblems hidden by the abstraction are solved by classical search-based solvers, which leads to an interleaving of parameterized and classical solving. Finally, we provide nested DP algorithms and implementations relying on database technology for variants and extensions of Boolean satisfiability. Experiments indicate that the advancements are promising.
Bounded treewidth is one of the most cited combinatorial invariants in the literature. It was also applied for solving several counting problems efficiently. A canonical counting problem is #Sat, which asks to count the satisfying assignments of a Boolean formula. Recent work shows that benchmarking instances for #Sat often have reasonably small treewidth. This paper deals with counting problems for instances of small treewidth. We introduce a general framework to solve counting questions based on state-of-the-art database management systems (DBMSs). Our framework takes explicitly advantage of small treewidth by solving instances using dynamic programming (DP) on tree decompositions (TD). Therefore, we implement the concept of DP into a DBMS (PostgreSQL), since DP algorithms are already often given in terms of table manipulations in theory. This allows for elegant specifications of DP algorithms and the use of SQL to manipulate records and tables, which gives us a natural approach to bring DP algorithms into practice. To the best of our knowledge, we present the first approach to employ a DBMS for algorithms on TDs. A key advantage of our approach is that DBMSs naturally allow for dealing with huge tables with a limited amount of main memory (RAM).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.