We introduce the class of epsilon-strongly graded rings and show that it properly contains both the class of strongly graded rings and the class of unital partial crossed products. We determine precisely when an epsilon-strongly graded ring is separable over its principal component. Thereby, we simultaneously generalize a result for strongly group graded rings by Nǎstǎsescu, Van den Bergh and Van Oystaeyen, and a result for unital partial crossed products by Bagio, Lazzarin and Paques. We also show that the class of unital partial crossed products appear in the class of epsilon-strongly graded rings in a fashion similar to how the classical crossed products present themselves in the class of strongly graded rings. Thereby, we obtain, in the special case of unital partial crossed products, a short proof of a general result by Dokuchaev, Exel and Simón concerning when graded rings can be presented as partial crossed products. We also provide some interesting classes of examples of separable epsilon-strongly graded rings, with finite as well as infinite grading groups. In particular, we obtain an answer to a question raised by Le Bruyn, Van den Bergh and Van Oystaeyen in 1988.
Given a directed graph [Formula: see text] and an associative unital ring [Formula: see text] one may define the Leavitt path algebra with coefficients in [Formula: see text], denoted by [Formula: see text]. For an arbitrary group [Formula: see text], [Formula: see text] can be viewed as a [Formula: see text]-graded ring. In this paper, we show that [Formula: see text] is always nearly epsilon-strongly [Formula: see text]-graded. We also show that if [Formula: see text] is finite, then [Formula: see text] is epsilon-strongly [Formula: see text]-graded. We present a new proof of Hazrat’s characterization of strongly [Formula: see text]-graded Leavitt path algebras, when [Formula: see text] is finite. Moreover, if [Formula: see text] is row-finite and has no source, then we show that [Formula: see text] is strongly [Formula: see text]-graded if and only if [Formula: see text] has no sink. We also use a result concerning Frobenius epsilon-strongly [Formula: see text]-graded rings, where [Formula: see text] is finite, to obtain criteria which ensure that [Formula: see text] is Frobenius over its identity component.
We introduce non-associative Ore extensions, S = R[X; σ, δ], for any nonassociative unital ring R and any additive maps σ, δ : R → R satisfying σ(1) = 1 and δ(1) = 0. In the special case when δ is either left or right R δ -linear, where R δ = ker(δ), and R is δ-simple, i.e. {0} and R are the only δ-invariant ideals of R, we determine the ideal structure of the non-associative differential polynomial ring D = R[X; idR, δ]. Namely, in that case, we show that all ideals of D are generated by monic polynomials in the center Z(D) of D. We also show that Z(D) = R δ [p] for a monic p ∈ R δ [X], unique up to addition of elements from Z(R) δ . Thereby, we generalize classical results by Amitsur on differential polynomial rings defined by derivations on associative and simple rings. Furthermore, we use the ideal structure of D to show that D is simple if and only if R is δ-simple and Z(D) equals the field R δ ∩ Z(R). This provides us with a non-associative generalization of a result by Öinert, Richter, and Silvestrov. This result is in turn used to show a non-associative version of a classical result by Jordan concerning simplicity of D in the cases when the characteristic of the field R δ ∩ Z(R) is either zero or a prime. We use our findings to show simplicity results for both non-associative versions of Weyl algebras and non-associative differential polynomial rings defined by monoid/group actions on compact Hausdorff spaces.
We introduce the class of partially invertible modules and show that it is an inverse category which we call the Picard inverse category. We use this category to generalize the classical construction of crossed products to, what we call, generalized epsilon-crossed products and show that these coincide with the class of epsilon-strongly groupoid graded rings. We then use generalized epsilon-crossed groupoid products to obtain a generalization, from the group graded situation to the groupoid graded case, of the bijection from a certain second cohomology group, defined by the grading and the functor from the groupoid in question to the Picard inverse category, to the collection of equivalence classes of rings epsilon-strongly graded by the groupoid.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.