Haptic feedback has been widely studied for in-car interactions. However, most of this research has used vibrotactile cues. This paper presents two studies that examine novel thermal feedback for navigation during simulated driving for a lane change task. In the first, we compare the distraction and time differences of audio and thermal feedback. The results show that the presentation of thermal stimuli does not increase lane deviation, but the time needed to complete a lane change increased by 1.82 seconds. In the second study, the influence of variable changes of thermal stimuli on the lane change task performance was tested. We found that the same stimulus design for warm and cold temperatures does not always elicit the same results. Furthermore, variable alterations can have different effects on specified tasks. This suggests that the design of thermal stimuli is highly dependent on what task result should be maximized.
Haptic feedback is used in cars to reduce visual inattention. While tactile feedback like vibration can be influenced by the car's movement, thermal and cutaneous push feedback should be independent of such interference. This paper presents two driving simulator studies investigating novel tactile feedback on the steering wheel for navigation. First, devices on one side of the steering wheel were warmed, indicating the turning direction, while those on the other side were cooled. This thermal feedback was compared to audio. The thermal navigation lead to 94.2% correct recognitions of warnings 200m before the turn and to 91.7% correct turns. Speech had perfect recognition for both. In the second experiment, only the destination side was indicated thermally, and this design was compared to cutaneous push feedback. The simplified thermal feedback design did not increase recognition, but cutaneous push feedback had high recognition rates (100% for 200 m warnings, 98% for turns).
Vehicles offering autonomous features need effective methods for transferring the control from the driver to the vehicle and back. While most research focuses on presenting information the driver might need after retaking control, our study investigates ways to Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the owner/author(s).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.