We conducted an AFM analysis of roughness on 7 materials widely used in bone reconstruction. Roughness was evaluated by measuring Root Mean Square (RMS) values and RMS/average height (AH) ratio, in different dimensional ranges, varying from 100 microns square to a few hundreds of nanometers. The results showed that Titanium presented a lower roughness than the other materials analyzed, frequently reaching statistical significance. On the contrary, bioactive materials, such as hydroxyapatite (HA) and bioactive glasses, demonstrated an overall higher roughness. In particular, this study focuses attention on AP40 and especially RKKP, which proved to have a significant higher roughness at low dimensional ranges. This determines a large increase in surface area, which is strongly connected with osteoblast adhesion and growth and to protein absorption. Therefore, the biointegration properties of bioactive glasses can also be given as answer in terms of surface structures in which chemical composition can influence directly the biological system (e.g. with chemical exchanges and development of specific surface electrical charge) and indirectly, via the properties induced on tribological behavior that expresses itself during the smoothing of the surfaces. We also test two new bioactive glasses, RBP1 and RBP2, with a chemical composition similar to AP40, but with some significant small additions and substitutions of components, in order to make preliminary considerations on their potential role in orthopedics.
Recently, a novel dental restorative composite based on nanostructured micro-fillers of anodic porous alumina has been proposed. While its bulk properties are promising thanks to decreased aging and drug delivery capabilities, its surface properties are still unknown. Here we investigated the surface morphology and the adhesion to tooth dentin of this composite as prepared. For comparison, we used two commercial composites: Tetric EVO Flow (Ivoclar) and Enamel HRi Plus (Micerium). The surface morphology was characterized by atomic force microscopy and the adhesion strength by tensile tests. The experimental composite is rougher than the commercial composites, with root mean square roughness of ~549 nm against 170–511 nm, and presents an adhesion strength of ~15 MPa against 19–21 MPa. These results show at the same time some proximity to the commercial composites, but also the need for optimization of the experimental material formulation.
Salivary cortisol role in response to strong stressors implied in extreme exercises and in sport practice was investigated with the aim to verify the claimed benefits that steers winter swimmers to self-prescribe the trials. Specific biochemical data allow to study a variety of stressors in sports and physical exercises, including extreme ones as winter swimming. Salivary cortisol behavior was examined in winter swimmers trials and canoe, canoe-polo competitions and comparisons of results between days with and without performances were reported. Cortisol circadian rhythm in sedentary subjects was collected as control. All the subjects were selected after anamnesticclinical checks to evaluate their physiological conditions. The circadian cortisol behavior was reported in days with competitions and trials as well as between these events. Abrupt cortisol concentration changes were detected at the time of the trials and competitions: surprisingly, large increasing and decreasing concentrations were detected in both groups. Moreover, in winter swimmers, cortisol concentration remained fairly elevated in the evening of the trial days. In days without competitions, the usual cortisol circadian rhythm was recovered in sportsmen whereas cortisol concentrations persisted at high levels up to the evening in winter swimmers. The view that an extreme sport-like exercise as the winter swimming may well pose some treats ranging from subclinical aspects up to dismetabolic pathologies and even cardiovascular risks is strengthened by results of cortisol trends, suggesting to check physiological conditions. Results demonstrate that well-being feeling can be in contrast to the claimed improvements of health.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.